yingweiwo

BMS 299897

Alias: BMS299897; BMS 299897; BMS-299897
Cat No.:V3492 Purity: ≥98%
BMS 299897 is a novel and potent sulfonamideγ-secretaseinhibitor with anIC50of 7 nM for Aβ production inhibition in HEK293 cells stably overexpressing amyloid precursor protein (APP).
BMS 299897
BMS 299897 Chemical Structure CAS No.: 290315-45-6
Product category: γ-secretase
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
25mg
50mg
100mg
250mg
500mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

BMS 299897 is a novel and potent sulfonamide γ-secretase inhibitor with an IC50 of 7 nM for Aβ production inhibition in HEK293 cells stably overexpressing amyloid precursor protein (APP). BMS-299897 blocked the increase in Aβ(1-42) content and decreased Aβ(1-40) levels significantly. The compound did not affect Aβ(25-35)-induced increase in hippocampal lipid peroxidation. Behaviorally, BMS-299897 blocked the Aβ(25-35)-induced deficits in spontaneous alternation or novel object recognition, using a 1h intertrial time interval. BMS-299896 failed to affect the passive avoidance impairments or novel object recognition, using a 24h intertrial time interval. These results confirmed that Aβ(25-35) injection provoked an accumulation in endogenous Aβ(1-42), an effect blocked by γ-secretase inhibition. This Aβ(1-42) accumulation marginally contributed to the toxicity or long-term memory deficits. However, since the seeded Aβ(1-42) affected short-term memory, the rapid Aβ(25-35) injection Alzheimer's disease model could be used to screen the activity of new secretase inhibitors.

Biological Activity I Assay Protocols (From Reference)
ln Vitro
Every Aβ peptide has its levels lowered by BMS-299897. BMS-299897 decreased these peptides to 20% to 50% of vehicle control levels at a dose of 1 μM. The QD-BDNF signal's retrograde-moving portion (p=0.0198) was decreased by the BMS-299897 treatment, although its anterograde-moving portion (p=0.0147) increased [2].
ln Vivo
In the brain, cerebrospinal fluid (CSF), and plasma of young transgenic mice, BMS-299897 demonstrates a dose- and time-dependent decrease in amyloid beta-peptide (Aβ), with a link between brain and CSF Aβ levels. In APP-YAC mice, BMS-299897 decreased Aβ1-40 in the brain and plasma and raised APP carboxyl-terminal fragment concentrations in the brain, which is consistent with γ-secretase inhibition. BMS-299897 reduces the toxicity and Aβ1-42 seeding caused by Aβ25-35. Aβ25-35 (9 nmol) and BMS-299897 were given to male Swiss mice at a dose of 0.1–1 nmol/mouse concurrently. A week later, the mice's hippocampal lipid peroxidation level and the contents of Aβ1-42 and Aβ1-40 were examined. To assess the short- and long-term memory capacities of mice, experiments including spontaneous alternation, passive avoidance, and object recognition were conducted. Aβ25-35 has no effect on Aβ1-40 but raises the content of Aβ1-42 by +240%. BMS-299897 considerably lowers Aβ1-40 levels and prevents the rise in Aβ1-42 content. The chemical in question has no effect on the rise in hippocampus lipid peroxidation generated by Aβ25-35. Using a 1-hour inter-trial delay, BMS-299897 behaviorally inhibits Aβ25-35-induced spontaneous alternation or impairments in novel object identification. The γ-secretase inhibitor BMS-299897, when administered in conjunction with Aβ25-35, totally prevents the increase in Aβ1-42 content in mice at doses between 0.1 and 1 μmol/mouse [1].
References

[1]. The γ-secretase inhibitor 2-[(1R)-1-[(4-chlorophenyl)sulfonyl](2,5-difluorophenyl) amino]ethyl-5-fluorobenzenebutanoic acid (BMS-299897) alleviates Aβ1-42 seeding and short-term memory deficits in the Aβ25-35 mouse model of Alzheimer's d.

[2]. A γ-secretase inhibitor, but not a γ-secretase modulator, induced defects in BDNF axonal trafficking and signaling: evidence for a role for APP. PLoS One. 2015 Feb 24;10(2):e0118379.

Additional Infomation
4-[2-[(1R)-1-(N-(4-chlorophenyl)sulfonyl-2,5-difluoroanilino)ethyl]-5-fluorophenyl]butanoic acid is a sulfonamide.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C24H21NO4F3SCL
Molecular Weight
511.94104
Exact Mass
511.083
CAS #
290315-45-6
PubChem CID
11249248
Appearance
White to off-white solid powder
Density
1.4±0.1 g/cm3
Boiling Point
620.0±65.0 °C at 760 mmHg
Flash Point
328.7±34.3 °C
Vapour Pressure
0.0±1.9 mmHg at 25°C
Index of Refraction
1.602
LogP
5.28
Hydrogen Bond Donor Count
1
Hydrogen Bond Acceptor Count
8
Rotatable Bond Count
9
Heavy Atom Count
34
Complexity
775
Defined Atom Stereocenter Count
1
SMILES
C[C@H](C1=C(C=C(C=C1)F)CCCC(=O)O)N(C2=C(C=CC(=C2)F)F)S(=O)(=O)C3=CC=C(C=C3)Cl
InChi Key
IZAOBRWCUGOKNH-OAHLLOKOSA-N
InChi Code
InChI=1S/C24H21ClF3NO4S/c1-15(21-11-7-18(26)13-16(21)3-2-4-24(30)31)29(23-14-19(27)8-12-22(23)28)34(32,33)20-9-5-17(25)6-10-20/h5-15H,2-4H2,1H3,(H,30,31)/t15-/m1/s1
Chemical Name
(R)-4-(2-(1-(4-chloro-N-(2,5-difluorophenyl)phenylsulfonamido)ethyl)-5-fluorophenyl)butanoic acid
Synonyms
BMS299897; BMS 299897; BMS-299897
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ≥ 30 mg/mL (~58.60 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (4.88 mM) (saturation unknown) in 10% DMSO + 40% PEG300 +5% Tween-80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 + to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.9534 mL 9.7668 mL 19.5335 mL
5 mM 0.3907 mL 1.9534 mL 3.9067 mL
10 mM 0.1953 mL 0.9767 mL 1.9534 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Biological Data
  • BMS 299897


    Differential effects of BMS-299897 and sGSM41 on APP processing.2015 Feb 24;10(2):e0118379.

  • BMS 299897


    BMS-299897, not sGSM41, induces deficits in retrograde axonal trafficking of QD-BDNF.2015 Feb 24;10(2):e0118379.

  • BMS 299897


    Knockdown of APP rescues deficits in velocity and directionality of axonally transported QD-BDNF induced by BMS-299897.2015 Feb 24;10(2):e

Contact Us