BMS-378806

Alias: BMS-378806; BMS 378806; BMS378806; BMS-806; BMS806; Bms 806.
Cat No.:V1839 Purity: ≥98%
BMS-378806 (also known as BMS 806)is a novel, potent, orally bioavailable small molecule thatselectively inhibits the binding of HIV-1 gp120 to the CD4 receptor with EC50 of 0.85-26.5 nM in HIV virus.
BMS-378806 Chemical Structure CAS No.: 357263-13-9
Product category: HIV
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
25mg
50mg
100mg
250mg
500mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

BMS-378806 (also known as BMS 806) is a novel, potent, orally bioavailable small molecule that selectively inhibits the binding of HIV-1 gp120 to the CD4 receptor with EC50 of 0.85-26.5 nM in HIV virus. BMS-378806 inhibits the first step of HIV-1 infection by blocking the binding of host cell CD4 with viral gp120 protein. It binds the exterior envelope glycoprotein gp120, which can block the conformational change that occurs with CD4 binding and preventing fusion of the viral and target cell membranes.

Biological Activity I Assay Protocols (From Reference)
Targets
HIV-1;HIV-2
ln Vitro
BMS-806, a 7-azaindole derivative, binds gp120 and interferes with the interaction of HIV surface protein gp120 with the host cell receptor CD4. BMS-806 inhibits a panel of macrophage- and T cell-tropic HIV-1 strains, which are laboratory strains that use either CCR5 (M-tropic) or CXR4 (T-tropic) co-receptors to enter cells and are classified as B subtypes. The aqueous solubility from the crystalline form of BMS-806 (BMS 378806) is 170 μg/mL. The solubility of BMS-806 is 1.3 mg/mL at pH=2.1 and 3.3 mg/mL at pH=11, a solubility profile that reveals the amphoteric nature of BMS-806 and estimates the pKa of the protonated form as 2.9 while that of the free base is approximately 9.6. BMS-806 competes with soluble CD4 binding to a monomeric form of gp120 in an ELISA assay with IC50 = ~ 100 nM. BMS-806 is specific towards HIV-1, with no significant inhibitory activity against HIV-2, SIV, MuLV, RSV, HCMV, BVDV, VSV, and influenza virus observed at concentrations ranging from 10 to 30 μM and no overt cytotoxicity toward host cells, CC50 values > 225 μM. BMS-806 binds directly to gp120 at a stoichiometry of approximately 1:1, with a binding affinity similar to that of soluble CD4. The potential BMS-806 target site is localized to a specific region within the CD4 binding pocket of gp120 by using HIV-1 gp120 variants carrying either compound-selected resistant substitutions or gp120-CD4 contact site mutations.
ln Vivo
When BMS-806 is administered dose-proportional increases in the AUC and Cmax is observed. In rat, dog and monkey, plasma levels of drug exceeded the concentrations required to half-maximally inhibit virus replication in vitro. The volume of distribution of BMS-806 ranges from 0.4 to 0.6 L/kg, indicative of partitioning beyond plasma; however, examination of brain levels in the rat revealed minimal CNS penetration. BMS-806 is stable in human, rat, dog and monkey blood at 37 °C during a 2-h incubation. The blood-to-plasma concentration ratios in humans, rats, dogs and monkeys are 1.1, 0.77, 1.2 and 0.92 (n=3), respectively, suggesting that BMS-806 is distributed to approximately the same extent between plasma and blood cells. The human clearance of BMS-806 predicted from microsomes is 9.2 ml/min/kg (46% of the hepatic blood flow).
Enzyme Assay
In general, host cells are infected with HIV-1 at a multiplicity of infection (MOI) of 0.005 50% tissue culture infective doses (TCID50)/cell followed by incubation in the presence of serially diluted inhibitors for 4 to 7 days. Virus yields are quantitated using an RT assay or a p24 enzyme-linked immunosorbent assay (ELISA) (NEN). The results from at least three experiments are used to calculate the 50% effective concentrations (EC50s). The EC50s of IDV, SQV, RTV, and NFV are compared to that of BMS-806 using Dunnetts test. These comparisons are made separately within each assay system. Dunnetts test is used to reduce the probability of false-positive results when a number of treatments are being compared to a control. Confidence bounds for the fold increases in EC50s observes when the same drug is tested in two different assay systems are computed using Fiellers theorem. The use of this theorem is necessary because ratios of parameters (in this case, EC50s) are known not to follow a standard probability distribution, such as the normal distribution. Numbers within the confidence interval are not significantly different from the observed fold increase at the 95% level.
Cell Assay
To determine cytotoxicity, MT-2 cells are incubated in the presence of serially diluted BMS-806 for 6 days and cell viability is quantitated using an XTT [2,3-bis(2-methoxy-4-nitro-5-sulfophenyl-2H-tetrazolium-5-carboxanilide] assay to calculate the 50% cytotoxic concentrations (CC50s).
Animal Protocol
Dissolved in poly (ethylene glycol) 400/ethanol (90:10 v/v).; 3.4, and 5 mg/kg; i.v. injection
Rat, dog and monkey
References

[1]. Discovery of 4-benzoyl-1-[(4-methoxy-1H- pyrrolo[2,3-b]pyridin-3-yl)oxoacetyl]-2- (R)-methylpiperazine (BMS-378806): a novel HIV-1 attachment inhibitor that interferes with CD4-gp120 interactions. J Med Chem. 2003 Sep 25;46(20):4236-9.

[2]. Envelope conformational changes induced by human immunodeficiency virus type 1 attachment inhibitors prevent CD4 binding and downstream entry events. J Virol. 2006 Apr;80(8):4017-25.

[3]. Biochemical and genetic characterizations of a novel human immunodeficiency virus type 1 inhibitor that blocks gp120-CD4 interactions. J Virol. 2003 Oct;77(19):10528-36

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C22H22N4O4
Molecular Weight
406.43
Exact Mass
406.16
Elemental Analysis
C, 65.01; H, 5.46; N, 13.78; O, 15.75
CAS #
357263-13-9
Appearance
Solid powder
SMILES
C[C@@H]1CN(CCN1C(=O)C(=O)C2=CNC3=NC=CC(=C23)OC)C(=O)C4=CC=CC=C4
InChi Key
FCBQJNCAKZSIAH-NDEPHWFRSA-N
InChi Code
InChI=1S/C21H23FN2O3S/c22-17-3-1-15(2-4-17)13-16-7-9-24(10-8-16)11-12-28(26)18-5-6-19-20(14-18)27-21(25)23-19/h1-6,14,16H,7-13H2,(H,23,25)/t28-/m0/s1
Chemical Name
4-benzoyl-1-((4-methoxy-1H- pyrrolo(2,3-b)pyridin-3-yl)oxoacetyl)-2- (R)-methylpiperazine
Synonyms
BMS-378806; BMS 378806; BMS378806; BMS-806; BMS806; Bms 806.
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : 50~81 mg/mL ( 123.02~199.29 mM )
Ethanol : ~81 mg/mL
Solubility (In Vivo)
30% PEG400+0.5% Tween 80+5% propylene glycol: 30mg/ml (73.81mM) (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.4604 mL 12.3022 mL 24.6045 mL
5 mM 0.4921 mL 2.4604 mL 4.9209 mL
10 mM 0.2460 mL 1.2302 mL 2.4604 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us