Size | Price | Stock | Qty |
---|---|---|---|
5mg |
|
||
10mg |
|
||
25mg |
|
||
50mg |
|
||
100mg |
|
||
250mg |
|
||
Other Sizes |
|
Purity: ≥98%
BMS-816336 is a potent and orally bioactive inhibitor of human 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) enzyme with an IC50 of 3.0 nM. BMS-816336 showed activity against human 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) enzyme (IC50 3.0 nM) with >10000 fold selectivity over human 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2). BMS-816336 exhibits a robust acute pharmacodynamic effects in cynomolgus monkeys (ED50 0.13 mpk) and in DIO mice. BMS-816336 was found to be well-tolerated in Phase 1 clinical studies and represents a potential new treatment for type 2 diabetes, metabolic syndrome, and other human diseases modulated by glucocorticoid control.
Targets |
11β-HSD1/11β-hydroxysteroid dehydrogenase type 1
|
---|---|
ln Vitro |
In addition to its possible clinical applications in the treatment of type II diabetes, 11β-HSD1 inhibition may also be beneficial in the prevention of atherosclerosis and cognitive decline. In HEK and 3T3L1 cells, BMS-816336 (6n-2) inhibits the 11β-HSD1 enzyme with IC50 values of 37.3 and 28.6 nM, respectively [1].
|
ln Vivo |
BMS-816336 is a possible novel medication for metabolic syndrome, type 2 diabetes, and other glucocorticoid-regulated human disorders. In DIO mice (1, 3, 10, 30, 100 mg/kg, 120 minutes) and cynomolgus monkeys (ED50=0.12 mg/kg), BMS-816336 (6n-2) demonstrates strong acute pharmacodynamic effects. Its oral bioavailability ranges from 20% to 72% in preclinical species. Its expected pharmacokinetic properties in humans include a short half-life and a peak to trough ratio [1].
|
Enzyme Assay |
11β-HSD1 SPA Enzyme Assay[1]
11β-HSD1 was assayed by scintillation proximity assay (SPA) in a 384-well PerkinElmer white plate. The dose response of the compounds was determined using 11 half-log dilutions of compound in DMSO in duplicate. To each well, 0.5 μL of compound dilution in DMSO were added. Then 15 μL of assay buffer (for blanks) or 15 μL of human microsomes in assay buffer were added next and the plates were incubated for 10 min at room temperature. The final microsomal protein concentration was 1.1 μg/assay. Duplicates were in the same plate one row below the other. Then 10 μL of 3H-cortisone (final concentration 40 nM) was added to each well and the plate was spun down to mix and bring down the contents to the bottom of the wells. The plates were incubated at room temperature with gentle shaking for 4 h. The reaction was stopped with addition of 10 μL of 10 mM carbenoxolone. Then 0.5 mg of yttrium silicate SPA beads coupled to anticortisol antibody in 20 μL were added to all the wells of plate, which were spun down once more and incubated at room temperature overnight. The plate was read in a TopCount (1 min/well). Data were uploaded automatically to Tool Set, a Lead Evaluation informatics program for data capture and calculation. Graphs were generated with the Curve Master program. |
Animal Protocol |
Animal/Disease Models: non-fasting diet-induced obese male mice [1]
Doses: 1, 3, 10, 30, 100 mg/kg Route of Administration: po (po (oral gavage)) 120 minutes Experimental Results: ED50=8.6 mg/kg, plasma EC50 is 0.85 μM model [1]. In Vivo Pharmacodynamic Assessment in Mice[1] Nonfasting diet-induced obese male mice were weighed and separated into groups (n = 6) such that body weights were not statistically different from each other. Animals were bled via the tail for a −60 min time sample and then were dosed orally with vehicle or drug. The vehicle was composed of 0.5% Methocel, 0.1% Tween 80 in water. At 60 min after dosing, mice were bled again via the tail and dosed orally with DHC @ 10 mg/kg. All animals were subsequently bled at 30, 60, and 120 min post DHC dosing. Plasma was isolated for analysis of corticosterone using a commercially available enzyme immunosorbent assay. Drug levels were also measured in the terminal bleed samples. In Vivo Pharmacodynamic Assessment in Cynomolgus Monkey[1] The experimental design for the cynomolgus monkey pharmacodynamics study is very similar to the mouse model described above. The test compound was administered at a predetermined time point prior to initiation of the experiment based upon the pharmacokinetics of the compound. The monkeys were then given a dose of substrate, and blood samples were removed at various time points thereafter. A notable difference from the mouse protocol was that even though the natural substrate for 11β-HSD-1 in primates was cortisone, the natural rodent substrate 11-dehydrocorticosterone (DHC) was used instead. |
ADME/Pharmacokinetics |
Following an IV dose, the total plasma clearance (CLTp) of BMS-816336 (6n-2) was high in rats, moderate in mice and monkeys, and low in dogs. Apparent elimination half-life estimates were 2 h (mouse), 3 h (rat), 7 h (dog), and 6 h (monkey). BMS-816336 (6n-2) distributes extravascularly in all animal species tested, with Vss of 2.0, 0.5, 3.0, and 4.2 L/kg in mouse, rat, dog, and monkey, respectively. In mice, the tissue-to-plasma concentration ratio averaged ∼0.15 in the adipose but showed concentration-dependency in the liver (1 to 56). Compound 6n-2 was deemed not to penetrate the blood–brain barrier in mice as brain concentrations were below the limit of quantification and brain/plasma ratios were found to be <0.1 at all time points studied. The absolute oral bioavailability of 6n-2 given as a homogenized suspension was estimated to be 56% (mouse), 20% (rat), 72% (dog), and 57% (monkey). Overall, 6n-2 demonstrated a favorable in vivo pharmacokinetic profile with higher peak-to-trough ratio, shorter mean residence times (MTR), and higher clearance values, differentiating itself well from our previous two clinical compounds. The pharmacokinetic properties of 6n-2 appeared to be potentially suitable for “transient” inhibition of the enzyme over a 24 h period dosed once daily. As such, we were eager to test this compound for HPA activation in cynomolgus monkey, a study which will be discussed later.[1]
|
References | |
Additional Infomation |
BMS-816336 (6n-2), a hydroxy-substituted adamantyl acetamide, has been identified as a novel, potent inhibitor against human 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) enzyme (IC50 3.0 nM) with >10000-fold selectivity over human 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2). 6n-2 exhibits a robust acute pharmacodynamic effect in cynomolgus monkeys (ED50 0.12 mg/kg) and in DIO mice. It is orally bioavailable (%F ranges from 20 to 72% in preclinical species) and has a predicted pharmacokinetic profile of a high peak to trough ratio and short half-life in humans. This ADME profile met our selection criteria for once daily administration, targeting robust inhibition of 11β-HSD1 enzyme for the first 12 h period after dosing followed by an "inhibition holiday" so that the potential for hypothalamic-pituitary-adrenal (HPA) axis activation might be mitigated. 6n-2 was found to be well-tolerated in phase 1 clinical studies and represents a potential new treatment for type 2 diabetes, metabolic syndrome, and other human diseases modulated by glucocorticoid control.[1]
In summary, 6n-2 is a potent and highly selective human 11β-HSD1 inhibitor, with excellent aqueous solubility and in vitro and in vivo safety profiles and acceptable pharmacokinetic properties. Structure-based drug design contributed to the incorporation of the 6-hydroxy group in the adamantane ring as the optimal substitution for activity and metabolic stability. Despite structural similarities, we observed flipped binding orientations of 4k and 6n-2 in their cocrystal structures with human 11β-HSD1 enzyme. The PK profile of 6n-2 was selected to enable partial (e.g., 12 h) enzyme inhibition in vivo upon once daily dosing, allowing for a “holiday” from inhibition, potentially resulting in amelioration of HPA axis activation typically observed with other inhibitors of this enzyme. While we suspect the pharmacokinetic profile of 6n-2 may alter its ability to activate the HPA axis, it is also noted that 6n-2 does not reach the brain in significant concentrations (brain:plasma ratio ∼0.05 in preclinical species), and this may also contribute to the lack of apparent HPA axis activation in the cyno. On the basis of an acceptable pre-IND safety and toxicity profile, 6n-2 has been advanced to phase 1 clinical studies and was found to be well-tolerated up to the maximally tested dose of 900 mg. The data from this study will be reported in due course. In addition to the treatment of type II diabetes and metabolic syndrome, 11β-HSD1 inhibition may find other potential clinical utilities such as atheroprotection and cognitive protection. These areas await further exploration.[1] |
Molecular Formula |
C21H27NO3
|
---|---|
Molecular Weight |
341.443986177444
|
Exact Mass |
341.199
|
Elemental Analysis |
C, 73.87; H, 7.97; N, 4.10; O, 14.06
|
CAS # |
1009583-20-3
|
Related CAS # |
(Rac)-BMS-816336;(R)-BMS-816336;1009583-83-8; 1009583-20-3 1009365-98-3
|
PubChem CID |
59336911
|
Appearance |
White to off-white solid powder
|
LogP |
1.7
|
Hydrogen Bond Donor Count |
2
|
Hydrogen Bond Acceptor Count |
3
|
Rotatable Bond Count |
3
|
Heavy Atom Count |
25
|
Complexity |
505
|
Defined Atom Stereocenter Count |
0
|
SMILES |
OC1C2CC3CC1CC(C2)C3(C1C=CC=CC=1)CC(N1CC(C1)O)=O
|
InChi Key |
OAAZMUGLOXGVNH-MEMOLBONSA-N, OAAZMUGLOXGVNH-CCVYDFRESA-N
|
InChi Code |
InChI=1S/C21H27NO3/c23-18-11-22(12-18)19(24)10-21(15-4-2-1-3-5-15)16-6-13-7-17(21)9-14(8-16)20(13)25/h1-5,13-14,16-18,20,23,25H,6-12H2/t13-,14?,16-,17+,20-,21-/m1/s1
|
Chemical Name |
2-((1R,2R,3S,5R,6R)-6-hydroxy-2-phenyladamantan-2-yl)-1-(3-hydroxyazetidin-1-yl)ethan-1-one
|
Synonyms |
BMS-816336; BMS 816336; 1009583-20-3; (Rac)-BMS-816336; (R)-BMS-816336; HLF8J24L87; 1009583-83-8; 1-(3-hydroxyazetidin-1-yl)-2-(6-hydroxy-2-phenyl-2-adamantyl)ethanone; Ethanone, 1-(3-hydroxy-1-azetidinyl)-2-(6-hydroxy-2-phenyltricyclo(3.3.1.13,7)dec-2-yl)-;
BMS816336.
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
DMSO : ~300 mg/mL (~878.63 mM)
|
---|---|
Solubility (In Vivo) |
Solubility in Formulation 1: ≥ 7.5 mg/mL (21.97 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 75.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL. Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution. Solubility in Formulation 2: ≥ 7.5 mg/mL (21.97 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution. For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 75.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly. Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution. View More
Solubility in Formulation 3: ≥ 7.5 mg/mL (21.97 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution. |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 2.9288 mL | 14.6439 mL | 29.2877 mL | |
5 mM | 0.5858 mL | 2.9288 mL | 5.8575 mL | |
10 mM | 0.2929 mL | 1.4644 mL | 2.9288 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.