yingweiwo

BMS-986020

Alias: AM152; AM 152; AM-152; AP-3152 free acid; BMS-986020; 1257213-50-5; AP-3152 free acid; 38CTP01B4L; (R)-1-(4'-(3-Methyl-4-(((1-phenylethoxy)carbonyl)amino)isoxazol-5-yl)-[1,1'-biphenyl]-4-yl)cyclopropane-1-carboxylic acid; Cyclopropanecarboxylic acid, 1-[4'-[3-methyl-4-[[[(1R)-1-phenylethoxy]carbonyl]amino]-5-isoxazolyl][1,1'-biphenyl]-4-yl]-; UNII-38CTP01B4L; 1-[4-[4-[3-methyl-4-[[(1R)-1-phenylethoxy]carbonylamino]-1,2-oxazol-5-yl]phenyl]phenyl]cyclopropane-1-carboxylic acid; BMS-986020; BMS986020; BMS 986020
Cat No.:V3470 Purity: ≥98%
BMS-986020 (also known as AM152 and AP-3152 free acid) is a novel, potent and selective LPA1 (lysophosphatidic acid) antagonist.
BMS-986020
BMS-986020 Chemical Structure CAS No.: 1257213-50-5
Product category: LPL Receptor
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
5mg
10mg
25mg
50mg
100mg
250mg
Other Sizes

Other Forms of BMS-986020:

  • BMS-986020 sodium
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

BMS-986020 (also known as AM152 and AP-3152 free acid) is a novel, potent and selective LPA1 (lysophosphatidic acid) antagonist. For the treatment of idiopathic pulmonary fibrosis, BMS-986020 is currently undergoing a Phase 2 clinical trial. BMS-986020 specifically inhibits the LPA receptor, which is involved in the binding of the signaling molecule lysophosphatidic acid. This molecule is involved in a complex range of biological functions, including the invasion of tumor cells, smooth muscle contraction, platelet aggregation, cell proliferation, and chemotaxis.

Biological Activity I Assay Protocols (From Reference)
Targets
BSEP ( IC50 = 4.8 μM ); MRP4 ( IC50 = 6.2 μM ); MDR3 ( IC50 = 7.5 μM ); LPA1
ln Vitro
In the lungs of healthy mice, bleomycin-treated mice, and IPF mice, the percent displacement at 0.1 nM is 18%, 24%, and 31%, respectively. The percentages of displacement at 10 nM are 73%, 76%, and 64%, in that order. As a translational research tool, [18F]BMT-083133, a radioligand that targets LPA1, is designed to measure lung LPA1 engagement of BMS-986020 through in vitro autoradiography (ARG)[4].
ln Vivo
Stroke is a leading cause of death. Stroke survivors often suffer from long-term functional disability. This study demonstrated neuroprotective effects of BMS-986020 (BMS), a selective lysophosphatidic acid receptor 1 (LPA1) antagonist under clinical trials for lung fibrosis and psoriasis, against both acute and sub-acute injuries after ischemic stroke by employing a mouse model with transient middle cerebral artery occlusion (tMCAO). BMS-986020 administration immediately after reperfusion significantly attenuated acute brain injuries including brain infarction, neurological deficits, and cell apoptosis at day 1 after tMCAO. Neuroprotective effects of BMS-986020 were preserved even when administered at 3 h after reperfusion. Neuroprotection by BMS against acute injuries was associated with attenuation of microglial activation and lipid peroxidation in post-ischemic brains. Notably, repeated BMS administration daily for 14 days after tMCAO exerted long-term neuroprotection in tMCAO-challenged mice, as evidenced by significantly attenuated neurological deficits and improved survival rate. It also attenuated brain tissue loss and cell apoptosis in post-ischemic brains. Mechanistically, it significantly enhanced neurogenesis and angiogenesis in injured brains. A single administration of BMS provided similar long-term neuroprotection except survival rate. Collectively, BMS provided neuroprotection against both acute and sub-acute injuries of ischemic stroke, indicating that BMS might be an appealing therapeutic agent to treat ischemic stroke.[5]
BMS-986020 altered bile homeostasis in vivo, yielding elevated systemic bile acids in rats and humans. In contrast, a structurally distinct LPA1 antagonist BMS-986020, at projected clinically relevant concentrations, did not inhibit BSEP (IC50=19.6 µM), MRP4 (>50 µM), or MDR3 (>50 µM) in vitro, or inhibit bile acid efflux in human hepatocytes (≤50 µM). Additionally, BMS-986020 did not increase bile acids in rats or monkeys. In conclusion, the hepatobiliary effects observed with BMS-986020 are likely off-target effects specific to this molecule and not mediated via antagonism of LPA1. These results suggest that structural variations in LPA1 antagonists may result in different safety profiles in patients with IPF and other fibrotic diseases.[2]
Of 143 randomized patients, 108 completed the 26-week dosing phase. Thirty-five patients discontinued prematurely. Patient baseline characteristics were similar between treatment groups (placebo: n = 47; 600 mg qd: n = 48; 600 mg bid: n = 48). Patients treated with BMS-986020 bid experienced a significantly slower rate of decline in FVC vs placebo (-0.042 L; 95% CI, -0.106 to -0.022 vs -0.134 L; 95% CI, -0.201 to -0.068, respectively; P = .049). Dose-related elevations in hepatic enzymes were observed in both BMS-986020 treatment groups. The study was terminated early because of three cases of cholecystitis that were determined to be related to BMS-986020 after unblinding. Conclusions: BMS-986020 600 mg bid treatment for 26 weeks vs placebo significantly slowed the rate of FVC decline. Both regimens of BMS-986020 were associated with elevations in hepatic enzymes[2].
Enzyme Assay
TUNEL Assay[5]
To determine effects of BMS-986020 on cell apoptosis, TUNEL immunoassay was performed at 1 day and 15 days after tMCAO using an in-situ cell death detection kit according to the manufacturer’s protocol. Cryostat brain sections were post-fixed in 4% PFA for 10 min and permeabilized with 0.1% sodium citrate in 0.1% Triton X-100 for 2 min on ice. Brain sections were then labelled with TUNEL assay kit for 1 h, washed with PBS, and mounted with VECTASHIELD mounting media. Images were taken with a DP72 camera using a fluorescent microscope.
Immunohistochemistry Against Iba1 or 4-HNE[5]
To determine the effects of BMS-986020 administration on microglial activation and lipid peroxidation, immunohistochemical analysis was performed as described previously. Briefly, cryostat brain sections were oxidized with 1% H2O2 for 15 min and blocked with 1% fetal bovine serum (FBS) in 0.3% Triton X-100. Sections were then labeled with a rabbit primary antibody against Iba1 (1:500) or 4-hydroxynonenal (4-HNE, 1:500) overnight at 4 °C, further labeled with an appropriate biotinylated secondary antibody (1:200), and then incubated with ABC reagent (1:100, Vector Laboratories). Brain sections were exposed to 3,3’-diaminobenzidine substrate to visualize Iba1- or 4-HNE-positive signals, dehydrated in ascending grade of alcohol, cleared in xylene, and mounted with an Entellan media.
Double Immunofluorescence Followed by 5-Bromo-2′-Deoxyuridine (BrdU) Incorporation[5]
To determine effects of BMS-986020 administration on neurogenesis and angiogenesis, BrdU/DCX- and BrdU/CD31-double immunofluorescence assays were performed as described previously. In brief, BrdU (50 mg/kg in PBS, i.p.) was administered to mice at 13 and 14 days after tMCAO challenge for four times at 12 h interval. For double immunofluorescence, brain sections were incubated with 2N HCl to denature DNA followed by neutralization with 0.1 M borate buffer. Sections were then blocked with 1% FBS in 0.3% Triton X-100 and simultaneously incubated—with either a rat anti-BrdU (1:400) and a goat anti-DCX (1:100) primary antibodies or a mouse anti-BrdU (1:200A) and a rat anti-CD31 (1:300) primary antibodies—overnight at 4 °C to label newly formed neurons or newly formed blood vessels. Sections were then incubated with respective secondary antibodies (1:1000) conjugated with Cy3 or AF488 and mounted with VECTASHIELD mounting media. Images were obtained using a confocal microscope.
Cell Assay
Dulbecco's Modified Eagle Medium (DMEM) + GlutaMax supplemented with 0.4% fetal bovine serum, 37.5 mg/mL Ficoll 70, 25 mg/mL Ficoll 400, and 1% ascorbic acid was used to cultivate human lung fibroblasts in 48-well plates. The cells were stimulated in four replicates with either 1 ng/mL of transforming growth factor beta 1 (TGF-β1) or 20 µM LPA with or without BMS-986020 (0.01, 0.05, 0.1, 0.5, 1, or 5 µM) diluted in dimethyl sulfoxide (DMSO) or vehicle (0.05% DMSO). For twelve days, cells were grown at 37 °C in a 95% O2 and 5% CO2 environment. On days four and eight, the culture media were replaced. Until the biomarker measurements, supernatants were kept at −20 °C in storage. On Day 0 (before starting medication treatment) and Day 12, alamarBlue was utilized to measure cellular metabolism. Lactate dehydrogenase (LDH) release was measured on Days 4, 8, and 12.
Animal Protocol
After MCA occlusion, mice were randomly assigned into a BMS-986020 or a vehicle (1% DMSO in 10% Tween-80)-administered group. To determine whether BMS-986020 could exert neuroprotective effects against acute brain injuries in tMCAO-challenged mice, BMS-986020 was administered via oral gavage at different dosages (0.5, 2, 5, and 10 mg/kg) immediately after reperfusion. For the time window experiment, BMS-986020 was orally administered at 3 h after reperfusion. To determine long-term neuroprotective effects of BMS-986020 against sub-acute brain injuries, BMS-986020 was orally administered once immediately after reperfusion for the single administration group or daily for the repeated administration group (administration for fourteen consecutive days).[5]
IM136003 was a phase 2, parallel-arm, multicenter, randomized, double-blind, placebo-controlled trial. Adults with IPF (FVC, 45%-90%; diffusing capacity for carbon monoxide, 30%-80%) were randomized to receive placebo or 600 mg BMS-986020 (once daily [qd] or bid) for 26 weeks. The primary end point was rate of change in FVC from baseline to week 26.[3]
References

[1]. Lysophospholipid receptors in drug discovery. Exp Cell Res. 2015 May 1;333(2):171-7.

[2]. LPA1 antagonists BMS-986020 and BMS-986234 for idiopathic pulmonary fibrosis: Preclinical evaluation of hepatobiliary homeostasis. European Respiratory Journal.

[3]. Randomized, Double-Blind, Placebo-Controlled, Phase 2 Trial of BMS-986020, a Lysophosphatidic Acid Receptor Antagonist for the Treatment of Idiopathic Pulmonary Fibrosis. Chest. 2018 Nov;154(5):1061-1069.

[4]. Autoradiographic evaluation of [18F]BMT-083133, a lysophosphatidic acid receptor 1 (LPA1) radioligand. The jornal of nuclear medicine.

[5]. BMS-986020, a Specific LPA1 Antagonist, Provides Neuroprotection against Ischemic Stroke in Mice. Antioxidants logo Antioxidants (Basel). 2020 Nov 8;9(11):1097.

Additional Infomation
BMS-986020 is under investigation in clinical trial NCT02017730 (To Evaluate The Relationship Between Plasma Drug Levels And Receptor Binding in Lung Using PET (Positron Emission Tomography) In Healthy Volunteers).
BMS-986020 is a small molecule drug with a maximum clinical trial phase of II (across all indications) and has 2 investigational indications.
Idiopathic pulmonary fibrosis (IPF) is a chronic fibrosing lung disease with limited effective treatment options. The LPA1 pathway has been implicated in the etiology and pathogenesis of IPF and is a promising therapeutic target for fibrotic diseases. LPA1 antagonists, including BMS‑986020 and BMS-986234, are being investigated for IPF. Differences in structure and pharmacology of LPA1 antagonists could impact their efficacy and safety profile. In a Phase 2 trial, BMS-986020 compared with placebo significantly slowed lung function decline but, in some patients, showed hepatobiliary effects; the mechanisms underlying these effects were investigated in vitro and in vivo. In vitro, BMS-986020 inhibits bile acid and phospholipid transporters, BSEP (IC50=4.8 µM), MRP4 (6.2 µM), and MDR3 (7.5 µM), which may reduce bile acid and phospholipid efflux, and alter bile composition and flow. [2]
Lysophospholipids (LPs), including lysophosphatidic acid (LPA), sphingosine 1-phospate (S1P), lysophosphatidylinositol (LPI), and lysophosphatidylserine (LysoPS), are bioactive lipids that transduce signals through their specific cell-surface G protein-coupled receptors, LPA1-6, S1P1-5, LPI1, and LysoPS1-3, respectively. These LPs and their receptors have been implicated in both physiological and pathophysiological processes such as autoimmune diseases, neurodegenerative diseases, fibrosis, pain, cancer, inflammation, metabolic syndrome, bone formation, fertility, organismal development, and other effects on most organ systems. Advances in the LP receptor field have enabled the development of novel small molecules targeting LP receptors for several diseases. Most notably, fingolimod (FTY720, Gilenya, Novartis), an S1P receptor modulator, became the first FDA-approved medicine as an orally bioavailable drug for treating relapsing forms of multiple sclerosis. This success is currently being followed by multiple, mechanistically related compounds targeting S1P receptor subtypes, which are in various stages of clinical development. In addition, an LPA1 antagonist, BMS-986020 (Bristol-Myers Squibb), is in Phase 2 clinical development for treating idiopathic pulmonary fibrosis, as a distinct compound, SAR100842 (Sanofi) for the treatment of systemic sclerosis and related fibrotic diseases. This review summarizes the current state of drug discovery in the LP receptor field.[1[
diopathic pulmonary fibrosis (IPF) causes irreversible loss of lung function. The lysophosphatidic acid receptor 1 (LPA1) pathway is implicated in IPF etiology. Safety and efficacy of BMS-986020, a high-affinity LPA1 antagonist, was assessed vs placebo in a phase 2 study in patients with IPF.[3]
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C29H26N2O5
Molecular Weight
482.5271
Exact Mass
482.184
Elemental Analysis
C, 72.19; H, 5.43; N, 5.81; O, 16.58
CAS #
1257213-50-5
Related CAS #
BMS-986020 sodium; 1380650-53-2
PubChem CID
49792850
Appearance
White to yellow solid powder
Density
1.3±0.1 g/cm3
Boiling Point
664.8±55.0 °C at 760 mmHg
Flash Point
355.9±31.5 °C
Vapour Pressure
0.0±2.1 mmHg at 25°C
Index of Refraction
1.647
LogP
4.99
Hydrogen Bond Donor Count
2
Hydrogen Bond Acceptor Count
6
Rotatable Bond Count
8
Heavy Atom Count
36
Complexity
764
Defined Atom Stereocenter Count
1
SMILES
O([H])C(C1(C2C([H])=C([H])C(C3C([H])=C([H])C(C4=C(C(C([H])([H])[H])=NO4)N([H])C(=O)O[C@]([H])(C([H])([H])[H])C4C([H])=C([H])C([H])=C([H])C=4[H])=C([H])C=3[H])=C([H])C=2[H])C([H])([H])C1([H])[H])=O
InChi Key
GQBRZBHEPUQRPL-LJQANCHMSA-N
InChi Code
InChI=1S/C29H26N2O5/c1-18-25(30-28(34)35-19(2)20-6-4-3-5-7-20)26(36-31-18)23-10-8-21(9-11-23)22-12-14-24(15-13-22)29(16-17-29)27(32)33/h3-15,19H,16-17H2,1-2H3,(H,30,34)(H,32,33)/t19-/m1/s1
Chemical Name
1-[4-[4-[3-methyl-4-[[(1R)-1-phenylethoxy]carbonylamino]-1,2-oxazol-5-yl]phenyl]phenyl]cyclopropane-1-carboxylic acid
Synonyms
AM152; AM 152; AM-152; AP-3152 free acid; BMS-986020; 1257213-50-5; AP-3152 free acid; 38CTP01B4L; (R)-1-(4'-(3-Methyl-4-(((1-phenylethoxy)carbonyl)amino)isoxazol-5-yl)-[1,1'-biphenyl]-4-yl)cyclopropane-1-carboxylic acid; Cyclopropanecarboxylic acid, 1-[4'-[3-methyl-4-[[[(1R)-1-phenylethoxy]carbonyl]amino]-5-isoxazolyl][1,1'-biphenyl]-4-yl]-; UNII-38CTP01B4L; 1-[4-[4-[3-methyl-4-[[(1R)-1-phenylethoxy]carbonylamino]-1,2-oxazol-5-yl]phenyl]phenyl]cyclopropane-1-carboxylic acid; BMS-986020; BMS986020; BMS 986020
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: 97~125 mg/mL (201.0~259.1 mM)
Ethanol: ~97 mg/mL
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.08 mg/mL (4.31 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.08 mg/mL (4.31 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.0724 mL 10.3621 mL 20.7241 mL
5 mM 0.4145 mL 2.0724 mL 4.1448 mL
10 mM 0.2072 mL 1.0362 mL 2.0724 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT02068053 Completed Drug: [14C] BMS-986020 Immunosuppression For Disease Bristol-Myers Squibb March 2014 Phase 1
NCT02017730 Completed Drug: BMS-986020
Drug: [11C]BMT-136088
Immunology Bristol-Myers Squibb January 2014 Phase 1
NCT02227173 Completed Drug: BMS-986020
Drug: Montelukast
Drug-drug Interaction Study Bristol-Myers Squibb September 2014 Phase 1
NCT01766817 Completed Drug: BMS-986020
Drug: Placebo matching with
BMS-986020
Idiopathic Pulmonary Fibrosis Bristol-Myers Squibb January 31, 2013 Phase 2
NCT02101125 Completed Drug: BMS-986020
Drug: Rosuvastatin
Immunosuppression For Disease Bristol-Myers Squibb March 2014 Phase 1
Biological Data
  • BMS-986020


    Chronology of the LP field, LP and other lipid receptors, and overview of proximal LP signaling features.2015 May 1;333(2):171-7.

  • BMS-986020


    Disease mechanisms being accessed by LP-based drug discovery and compounds in clinical development.2015 May 1;333(2):171-7.

Contact Us