Size | Price | Stock | Qty |
---|---|---|---|
5mg |
|
||
10mg |
|
||
50mg |
|
||
100mg |
|
||
Other Sizes |
|
Targets |
Pan-retinoic acid receptor (RAR)
|
---|---|
ln Vitro |
BMS493 (100 nM; 6 days; ALDHhi UCB cells) treatment demonstrated a twofold increase in the number of ALDHhi cells accessible for transplantation compared to untreated controls. Newly introduced ALDHhi cells revealed higher numbers of CD34 and CD133 positive cells, as well as decreased expression of CD38, a marker produced by hematopoietic cells [1].
|
ln Vivo |
Intrapancreatic transplantation of cell progeny resulted in decreased hypertension in streptozotocin-treated NOD/SCID mice following the augmentation of ALDHhi cells with or without BMS493. Thus, during the ex vivo procedure, ALDHhi cells generated from umbilical cord blood (UCB) essentially lose their capacity to produce islets [1].
|
Enzyme Assay |
Researchers have previously demonstrated that all-trans retinoic (atRA) induced growth inhibition and apoptosis in mouse embryonic palate mesenchymal cells (MEPM). In the present study, they investigated the molecular mechanisms of atRA-induced apoptosis and its putative action pathway. atRA-induced apoptosis is associated with activation of the initiator caspase-9 and the effector caspase-3, but not of the effector caspase-8. A broad caspase inhibitor (z-VAD-fmk), caspase-9 inhibitor z-LEHD-fmk and caspase-3 inhibitor (z-DEVD-fmk) blocked atRA-induced DNA fragmentation and sub-G1 fraction, but not caspase-8 inhibitor z-IETD-fmk. They further showed that atRA dose-dependently promoted mRNA expression of retinoic acid receptor beta (RAR-beta) and gamma. A weaker increase in RAR-alpha mRNA was seen only at the highest concentration of atRA (5 muM). The pan RAR antagonist, BMS493, completely abrogated atRA-induced DNA fragmentation, Sub-G1 fraction, and caspase-3 activation. Taken together, these findings show that caspase-mediated induction of apoptosis by atRA is an RAR-dependent signaling pathway.[2]
|
Cell Assay |
Cell Viability Assay[1]
Cell Types: ALDHhi UCB cells Tested Concentrations: 100 nM Incubation Duration: 6 days Experimental Results: Shows a twofold increase in the number of ALDHhi cells available for transplantation compared to the untreated control group. |
References |
|
Additional Infomation |
BMS-493 is a member of the class of dihydronaphthalenes that is 1,2-dihydronaphthalene which is substituted at positions 1, 1, 4, and 6 by methyl, methyl, phenylethynyl, and 2-(p-carboxyphenyl)vinyl groups, respectively (the E isomer). It has a role as a retinoic acid receptor antagonist. It is a member of benzoic acids, a stilbenoid, a member of dihydronaphthalenes and an acetylenic compound.
Cellular therapies are emerging as a novel treatment strategy for diabetes. Thus, the induction of endogenous islet regeneration in situ represents a feasible goal for diabetes therapy. Umbilical cord blood-derived hematopoietic progenitor cells (HPCs), isolated by high aldehyde dehydrogenase activity (ALDHhi), have previously been shown to reduce hyperglycemia after intrapancreatic (iPan) transplantation into streptozotocin (STZ)-treated nonobese diabetic (NOD)/severe combined immunodeficiency (SCID) mice. However, these cells are rare and require ex vivo expansion to reach clinically applicable numbers for human therapy. Therefore, we investigated whether BMS 493, an inverse retinoic acid receptor agonist, could prevent retinoic acid-induced differentiation and preserve islet regenerative functions during expansion. After 6-day expansion, BMS 493-treated cells showed a twofold increase in the number of ALDHhi cells available for transplantation compared with untreated controls. Newly expanded ALDHhi cells showed increased numbers of CD34 and CD133-positive cells, as well as a reduction in CD38 expression, a marker of hematopoietic cell differentiation. BMS 493-treated cells showed similar hematopoietic colony-forming capacity compared with untreated cells, with ALDHhi subpopulations producing more colonies than low aldehyde dehydrogenase activity subpopulations for expanded cells. To determine if the secreted proteins of these cells could augment the survival and/or proliferation of β-cells in vitro, conditioned media (CM) from cells expanded with or without BMS 493 was added to human islet cultures. The total number of proliferating β-cells was increased after 3- or 7-day culture with CM generated from BMS 493-treated cells. In contrast to freshly isolated ALDHhi cells, 6-day expansion with or without BMS 493 generated progeny that were unable to reduce hyperglycemia after iPan transplantation into STZ-treated NOD/SCID mice. Further strategies to reduce retinoic acid differentiation during HPC expansion is required to expand ALDHhi cells without the loss of islet regenerative functions.[1] |
Molecular Formula |
C29H24O2
|
---|---|
Molecular Weight |
404.51
|
Exact Mass |
404.178
|
Elemental Analysis |
C, 86.11; H, 5.98; O, 7.91
|
CAS # |
215030-90-3
|
PubChem CID |
9909190
|
Appearance |
White to light yellow solid powder
|
LogP |
6.671
|
Hydrogen Bond Donor Count |
1
|
Hydrogen Bond Acceptor Count |
2
|
Rotatable Bond Count |
5
|
Heavy Atom Count |
31
|
Complexity |
759
|
Defined Atom Stereocenter Count |
0
|
SMILES |
CC1(CC=C(C2=C1C=CC(=C2)/C=C/C3=CC=C(C=C3)C(=O)O)C#CC4=CC=CC=C4)C
|
InChi Key |
YCADIXLLWMXYKW-CMDGGOBGSA-N
|
InChi Code |
InChI=1S/C29H24O2/c1-29(2)19-18-24(14-10-21-6-4-3-5-7-21)26-20-23(13-17-27(26)29)9-8-22-11-15-25(16-12-22)28(30)31/h3-9,11-13,15-18,20H,19H2,1-2H3,(H,30,31)/b9-8+
|
Chemical Name |
4-[(E)-2-[5,5-dimethyl-8-(2-phenylethynyl)-6H-naphthalen-2-yl]ethenyl]benzoic acid
|
Synonyms |
BMS-493; BMS 493; 4-{(E)-2-[5,5-dimethyl-8-(phenylethynyl)-5,6-dihydronaphthalen-2-yl]ethenyl}benzoic acid; 4-[(1E)-2-[5,6-Dihydro-5,5-dimethyl-8-(2-phenylethynyl)-2-naphthalenyl]ethenyl]benzoic acid; BMS-204493; CHEMBL472172; BMS-493
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
DMSO : ~50 mg/mL (~123.61 mM)
|
---|---|
Solubility (In Vivo) |
Solubility in Formulation 1: 2.08 mg/mL (5.14 mM) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), suspension solution; with sonication.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL. Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution. Solubility in Formulation 2: 2.08 mg/mL (5.14 mM) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), suspension solution; with ultrasonication. For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly. Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution. View More
Solubility in Formulation 3: ≥ 2.08 mg/mL (5.14 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution. |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 2.4721 mL | 12.3606 mL | 24.7213 mL | |
5 mM | 0.4944 mL | 2.4721 mL | 4.9443 mL | |
10 mM | 0.2472 mL | 1.2361 mL | 2.4721 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.