Brefeldin A (BFA)

Alias: Brefeldin A; BFA; Cyanein; Decumbin; Brefeldin-A; Ascotoxin; Cyanein; Decumbin; Bredfeldin A; Synergisidin
Cat No.:V0160 Purity: ≥98%
Brefeldin A (also known as BFA), afungal metabolite, is a potent macrocyclic lactone antibiotic and ATPase inhibitor for intracellularvesicle formation and protein transport (protein traffickingbetween the endoplasmic reticulum (ER) and the Golgi apparatus) with IC50 of 0.2 μM in HCT 116 cells.
Brefeldin A (BFA) Chemical Structure CAS No.: 20350-15-6
Product category: Autophagy
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
100mg
250mg
500mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Brefeldin A (also known as BFA), a fungal metabolite, is a potent macrocyclic lactone antibiotic and ATPase inhibitor for intracellular vesicle formation and protein transport (protein trafficking between the endoplasmic reticulum (ER) and the Golgi apparatus) with IC50 of 0.2 μM in HCT 116 cells. It has antitumor, antifungal, and antiviral effects. It induces cancer cell differentiation and apoptosis. Treatment with BFA could attenuate stimulus-dependent hyperalgesia phenomenon via inhibiting vesicular exocytosis which process is important for ATP release. BFA induced cells apoprosis (colorectal cancer cell line HCT116 ) by inhibiting ATP which functioned in the process of cellular vesicle trafficking.

Biological Activity I Assay Protocols (From Reference)
ln Vitro
After 15 or 40 hours of treatment with brefeldin A (BFA), the endoplasmic reticulum (ER) swells significantly and moves to the periphery of normal kidney (NRK) cells. Actin and MT cytoskeleton are significantly disrupted by prolonged Brefeldin A therapy [1]. Brefeldin A and ADPR conjugate mediates the ADP-ribosylation of BARS. When created with cells obtained from CD38+ HeLa cells treated with BFA, bars demonstrate BAC binding [3]. Brefeldin A reduces MDA-MB-231 colony formation in 3D and 2D cultures, promotes identity-independent cell death in MDA-MB-231 breast cancer cells, and blocks MDA-MB migration and MMP 9 (matrix metal Peptidase 9) activity-231[2].
ln Vivo

Animal Protocol


References
[1]. Alvarez C, et al. Brefeldin A (BFA) disrupts the organization of the microtubule and the actin cytoskeletons. Eur J Cell Biol. 1999 Jan;78(1):1-14.
[2]. Tseng CN, et al. Brefeldin A reduces anchorage-independent survival, cancer stem cell potential and migration of MDA-MB-231 human breast cancer cells. Molecules. 2014 Oct 29;19(11):17464-77.
[3]. Wang J, et al. Erythroleukemia cells acquire an alternative mitophagy capability. Sci Rep. 2016 Apr 19;6:24641.
[4]. Colanzi A, et al. Molecular mechanism and functional role of brefeldin A-mediated ADP-ribosylation of CtBP1/BARS. Proc Natl Acad Sci U S A. 2013 Jun 11;110(24):9794-9.
[5]. Yu C, et al. Small molecules enhance CRISPR genome editing in pluripotent stem cells. Cell Stem Cell. 2015 Feb 5;16(2):142-7.
[6]. Nozawa N, et al. Subcellular localization of herpes simplex virus type 1 UL51 protein and role of palmitoylation in Golgi apparatus targeting. J Virol. 2003 Mar;77(5):3204-16.
[7]. Jensen HL, Rygaard J, Norrild B. A time-related study of Brefeldin A effects in HSV-1 infected cultured human fibroblasts. APMIS. 1995;103(7-8):530-539. doi:10.1111/j.1699-0463.1995.tb01402.x
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C16H24O4
Molecular Weight
280.36
CAS #
20350-15-6
Related CAS #
20350-15-6
SMILES
O([H])[C@]1([H])C([H])([H])[C@]2([H])C([H])=C([H])C([H])([H])C([H])([H])C([H])([H])[C@@]([H])(C([H])([H])[H])OC(C([H])=C([H])C([H])([C@@]2([H])C1([H])[H])O[H])=O |c:10,t:31|
InChi Key
KQNZDYYTLMIZCT-KQPMLPITSA-N
InChi Code
InChI=1S/C16H24O4/c1-11-5-3-2-4-6-12-9-13(17)10-14(12)15(18)7-8-16(19)20-11/h4,6-8,11-15,17-18H,2-3,5,9-10H2,1H3/b6-4+,8-7+/t11-,12+,13-,14+,15+/m0/s1
Chemical Name
(1S,2E,7S,10E,12R,13R,15S)-12,15-Dihydroxy-7-methyl-8-oxabicyclo[11.3.0]hexadeca-2,10-dien-9-one
Synonyms
Brefeldin A; BFA; Cyanein; Decumbin; Brefeldin-A; Ascotoxin; Cyanein; Decumbin; Bredfeldin A; Synergisidin
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: 4 mg/mL (14.3 mM)
Water:<1 mg/mL
Ethanol:<1 mg/mL
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (8.92 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (8.92 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (8.92 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


Solubility in Formulation 4: ≥ 2.5 mg/mL (8.92 mM) (saturation unknown) in 10% EtOH + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear EtOH stock solution to 400 μL of PEG300 and mix evenly; then add 50 μL of Tween-80 to the above solution and mix evenly; then add 450 μL of normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 5: ≥ 2.5 mg/mL (8.92 mM) (saturation unknown) in 10% EtOH + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear EtOH stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

Solubility in Formulation 6: ≥ 2.5 mg/mL (8.92 mM) (saturation unknown) in 10% EtOH + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear EtOH stock solution to 900 μL of corn oil and mix evenly.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 3.5668 mL 17.8342 mL 35.6684 mL
5 mM 0.7134 mL 3.5668 mL 7.1337 mL
10 mM 0.3567 mL 1.7834 mL 3.5668 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT05969353 Recruiting Other: accupunture Assessing the Effectiveness of BFA
as a Non-pharmacologic Pain Management
Intervention: A Randomised Sham Controlled Study
Bnai Zion Medical Center July 23, 2023 Not Applicable
NCT04094246 Recruiting Procedure: Battlefield Acupuncture Shoulder Injuries
Pain,Postoperative
Keller Army Community Hospital September 25, 2019 Not Applicable
NCT06333938 Not yet recruiting
NEW
Device: Bridge
Device: BFA
Anesthesia
Surgery
Durham VA Medical Center June 2024 Phase 4
NCT06128772 Not yet recruiting Other: Battlefield Acupuncture Chronic Pain
Substance Use Disorders
Edith Nourse Rogers Memorial
Veterans Hospital
November 30, 2023 Not Applicable
Biological Data
  • Brefeldin A

  • Brefeldin A (BFA)

    Inhibition of intracellular protein trafficking by Brefeldin A

  • Brefeldin A (BFA)

    Brefeldin A inhibits STING-induced IRF activity in THP1-Dual™ cells

Contact Us Back to top