yingweiwo

Buclizine

Cat No.:V17156 Purity: ≥98%
Buclizine is an orally bioactive antihistamine, anti-allergy compound.
Buclizine
Buclizine Chemical Structure CAS No.: 82-95-1
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price
500mg
1g
Other Sizes

Other Forms of Buclizine:

  • Buclizine HCl (UCB-4445)
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
Buclizine is an orally bioactive antihistamine, anti-allergy compound. Buclizine is a potent teratogen in rats and has anti-tumor effects.
Biological Activity I Assay Protocols (From Reference)
ln Vitro
MCF-7 cells' ability to grow is inhibited by buclizine (0.1–100 μM; 72 hours) [2]. In a dose-dependent manner, buclizine (9.625-77 μM; 72 hours) stops the cell cycle in the G1 phase [2]. In MCF-7 cells, buclizine (0-75 μM; 72 hours) boosts pro-apoptotic MCL-1S expression while decreasing the expression of cell cycle regulatory proteins and TCTP (translationally controlled tumor protein) [2].
ln Vivo
Rats are strongly teratogenic to buclizine diHClide (30-200 mg/kg; gestation days 10 to 15 and 12 to 15) [3].
Cell Assay
Cell Proliferation Assay[2]
Cell Types: MCF-7 Cell
Tested Concentrations: 0-100 μM
Incubation Duration: 72 hrs (hours)
Experimental Results: demonstrated considerable growth inhibition (IC50=19.18 μM).

Cell cycle analysis[2]
Cell Types: MCF-7 Cell
Tested Concentrations: 9.625, 19.25, 38.5 and 77 μM
Incubation Duration: 72 hrs (hours)
Experimental Results: The percentage of cells in G1 phase increased to 73% at 77 μM.

Western Blot Analysis[2]
Cell Types: MCF-7 Cell
Tested Concentrations: 0-75 μM
Incubation Duration: 72 hrs (hours)
Experimental Results: TCTP expression diminished by 40% at 75 μM. The expression of cyclin D1, cyclin D3, CDK2 and CDK4 diminished after 72 hrs (hours).
Animal Protocol
Animal/Disease Models: 87 adult female rats, weighing 240±20 grams [3]
Doses: 30, 40, 60, 100, 200 mg/kg
Doses: 30-200 mg/kg; pregnancy days 10 to 15 and Results on days 12 to 15: Dose levels of 60-100 mg/kg resulted in malformations in 100% of the pups.
ADME/Pharmacokinetics
Absorption, Distribution and Excretion
Rapidly absorbed following oral administration.
Metabolism / Metabolites
Hepatic.
References

[1]. Buclizine. Profiles Drug Subst Excip Relat Methodol. 2011;36:1-33.

[2]. Interaction of antihistaminic drugs with human translationally controlled tumor protein (TCTP) as novel approach for differentiation therapy. Oncotarget. 2016 Mar 29;7(13):16818-39.

[3]. Teratogenic effect of buclizine and hydroxyzine in the rat and chlorcyclizine in the mouse. Am J Obstet Gynecol. 1966 May 1;95(1):109-11.

Additional Infomation
Buclizine is an N-alkylpiperazine carrying (4-chlorophenyl)(phenyl)methyl and 4-tert-butylbenzyl groups. It has a role as an antiemetic, a cholinergic antagonist, a histamine antagonist, a local anaesthetic and a central nervous system depressant. It is a N-alkylpiperazine and a member of monochlorobenzenes. It is a conjugate base of a buclizine(2+).
Buclizine is an antihistamine medication with both antiemetic and anticholinergic effects, belonging to the piperazine derivative family of drugs. It was manufactured by Stuart Pharms and initially approved by the FDA in 1957. Following this, it was touted to be effective as an appetite stimulant in children when administered in the syrup form, however, this indication has not been validated. In addition to the above conditions, buclizine has been studied in the treatment of migraine attacks and in the treatment of nausea and vomiting during pregnancy.
Buclizine is a piperazine histamine H1 receptor antagonist with primarily antiemetic and antivertigo activities. Buclizine binds to and blocks the histamine H1 receptor, thereby preventing the symptoms that are caused by histamine activity. Buclizine exerts its anti-emetic effect by binding to and blocking the muscarinic and histamine receptors in the vomiting center of the central nervous system (CNS). This may prevent activation of the chemoreceptor trigger zone (CTZ) and may reduce nausea and vomiting.
Drug Indication
For prevention and treatment of nausea, vomiting, and dizziness associated with motion sickness and vertigo (dizziness caused by other medical problems).
Mechanism of Action
Vomiting (emesis) is essentially a protective mechanism for removing irritant or otherwise harmful substances from the upper GI tract. Emesis or vomiting is controlled by the vomiting centre in the medulla region of the brain, an important part of which is the chemotrigger zone (CTZ). The vomiting centre possesses neurons which are rich in muscarinic cholinergic and histamine containing synapses. These types of neurons are especially involved in transmission from the vestibular apparatus to the vomiting centre. Motion sickness principally involves overstimulation of these pathways due to various sensory stimuli. Hence the action of buclizine which acts to block the histamine receptors in the vomiting centre and thus reduce activity along these pathways. Furthermore since buclizine possesses anti-cholinergic properties as well, the muscarinic receptors are similarly blocked.
Pharmacodynamics
Buclizine is a piperazine-derivative antihistamine used as an antivertigo/antiemetic agent. Buclizine is used in the prevention and treatment of nausea, vomiting, and dizziness associated with motion sickness. Additionally, it has been used in the management of vertigo in diseases affecting the vestibular apparatus. Although the mechanism by which buclizine exerts its antiemetic and antivertigo effects has not been fully elucidated, its central anticholinergic properties are partially responsible. The drug depresses labyrinth excitability and vestibular stimulation, and it may affect the medullary chemoreceptor trigger zone. It also possesses anticholinergic, antihistaminic, central nervous system depressant, and local anesthetic effects.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C28H33N2CL
Molecular Weight
433.02802
Exact Mass
432.233
CAS #
82-95-1
Related CAS #
Buclizine dihydrochloride;129-74-8
PubChem CID
6729
Appearance
Typically exists as solid at room temperature
LogP
6.42
Hydrogen Bond Donor Count
0
Hydrogen Bond Acceptor Count
2
Rotatable Bond Count
6
Heavy Atom Count
31
Complexity
514
Defined Atom Stereocenter Count
0
SMILES
ClC1C=CC(C(N2CCN(CC3C=CC(C(C)(C)C)=CC=3)CC2)C2C=CC=CC=2)=CC=1
InChi Key
MOYGZHXDRJNJEP-UHFFFAOYSA-N
InChi Code
InChI=1S/C28H33ClN2/c1-28(2,3)25-13-9-22(10-14-25)21-30-17-19-31(20-18-30)27(23-7-5-4-6-8-23)24-11-15-26(29)16-12-24/h4-16,27H,17-21H2,1-3H3
Chemical Name
1-[(4-tert-butylphenyl)methyl]-4-[(4-chlorophenyl)-phenylmethyl]piperazine
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.3093 mL 11.5465 mL 23.0931 mL
5 mM 0.4619 mL 2.3093 mL 4.6186 mL
10 mM 0.2309 mL 1.1547 mL 2.3093 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us