yingweiwo

Butoconazole (RS 35887)

Alias: RS 35887-10-3 RS-35887-10-3 RS35887-10-3
Cat No.:V16568 Purity: ≥98%
Butoconazole(RS-35887) is a synthetic imidazole analog with fungistatic/antifungal properties.
Butoconazole (RS 35887)
Butoconazole (RS 35887) Chemical Structure CAS No.: 64872-76-0
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price
500mg
1g
Other Sizes

Other Forms of Butoconazole (RS 35887):

  • Butoconazole Nitrate (RS35887)
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Butoconazole (RS-35887) is a synthetic imidazole analog with fungistatic/antifungal properties. It is an effective therapy for vulvovaginal candidiasis for women who prefer solid-type vaginal preparations. Butoconazole interferes with steroid biosynthesis by inhibiting the conversion of lanosterol to ergosterol, thereby changing the fungal cell membrane lipid composition. This alters cell permeability and leads to growth inhibition.

Biological Activity I Assay Protocols (From Reference)
ln Vitro
In general, imidazole prevents lanosterol from being converted to ergosterol, which alters the lipid composition of fungal cell membranes. The osmotic death or growth inhibition of fungal cells is the final result of this structural alteration, which also modifies cell permeability [1].
ADME/Pharmacokinetics
Absorption, Distribution and Excretion
Following vaginal administration of butoconazole nitrate vaginal cream, 2% to 3 women, 1.7% (range 1.3-2.2%) of the dose was absorbed on average.
Toxicity/Toxicokinetics
Effects During Pregnancy and Lactation
◉ Summary of Use during Lactation
Vaginal butoconazole has not been studied during breastfeeding. About 5.5% of a vaginal dose is absorbed and its plasma half-life is 21 to 24 hours. Because there is no published experience with butoconazole during breastfeeding, other agents may be preferred, especially while nursing a newborn or preterm infant.
◉ Effects in Breastfed Infants
Relevant published information was not found as of the revision date.
◉ Effects on Lactation and Breastmilk
Relevant published information was not found as of the revision date.
References
[1]. Anik ST, et al. Extreme vertexes design in formulation development: solubility of butoconazole nitrate in a multicomponent system. J Pharm Sci. 1981;70(8):897-900.
[2]. Pharmacology refers to the chemical makeup and behavior of GYNAZOLE 1 (butoconazole nitrate cream).
Additional Infomation
Butoconazole is a member of the class of imidazoles that is 1H-imidazole in which the hydrogen attached to the nitrogen is substituted by a 4-(4-chlorophenyl)-2-[(2,6-dichlorophenyl)sulfanyl]butyl group. An antifungal agent, it is used as its nitrate salt in gynaecology for treatment of vulvovaginal infections caused by Candida species, particularly Candida albicans. It is a member of imidazoles, an aryl sulfide, a dichlorobenzene, a member of monochlorobenzenes, an imidazole antifungal drug and a conazole antifungal drug. It is a conjugate base of a butoconazole(1+).
Butoconazole is an imidazole antifungal used in gynecology.
Butoconazole is an Azole Antifungal.
Butoconazole is a synthetic imidazole derivative with fungistatic properties. Butoconazole interferes with steroid biosynthesis by inhibiting the conversion of lanosterol to ergosterol, thereby changing the fungal cell membrane lipid composition. This alters cell permeability and leads to growth inhibition. Butaconazole nitrate is active against many dermatophytes and yeasts. It also contains antibacterial effects against some gram-positive organisms.
See also: Butoconazole Nitrate (has salt form).
Drug Indication
For the local treatment of vulvovaginal candidiasis (infections caused by Candida)
FDA Label
Mechanism of Action
The exact mechanism of the antifungal action of butoconazole is unknown, however, it is presumed to function as other imidazole derivatives via inhibition of steroid synthesis. Imidazoles generally inhibit the conversion of lanosterol to ergosterol via the inhibition of the enzyme cytochrome P450 14α-demethylase, resulting in a change in fungal cell membrane lipid composition. This structural change alters cell permeability and, ultimately, results in the osmotic disruption or growth inhibition of the fungal cell.
Pharmacodynamics
Butoconazole is an imidazole derivative that has fungicidal activity in vitro against Candida spp. and has been demonstrated to be clinically effective against vaginal infections due to Candida albicans. Candida albicans has been identified as the predominant species responsible for vulvovaginal candidasis.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C19H17CL3N2S
Molecular Weight
411.76
Exact Mass
410.017
CAS #
64872-76-0
Related CAS #
Butoconazole nitrate;64872-77-1
PubChem CID
47472
Appearance
Typically exists as solid at room temperature
Density
1.3±0.1 g/cm3
Boiling Point
566.9±50.0 °C at 760 mmHg
Melting Point
68-70.5ºC
Flash Point
296.7±30.1 °C
Vapour Pressure
0.0±1.5 mmHg at 25°C
Index of Refraction
1.634
LogP
6.88
Hydrogen Bond Donor Count
0
Hydrogen Bond Acceptor Count
2
Rotatable Bond Count
7
Heavy Atom Count
25
Complexity
383
Defined Atom Stereocenter Count
0
InChi Key
SWLMUYACZKCSHZ-UHFFFAOYSA-N
InChi Code
InChI=1S/C19H17Cl3N2S/c20-15-7-4-14(5-8-15)6-9-16(12-24-11-10-23-13-24)25-19-17(21)2-1-3-18(19)22/h1-5,7-8,10-11,13,16H,6,9,12H2
Chemical Name
1-(4-(4-chlorophenyl)-2-((2,6-dichlorophenyl)thio)butyl)-1H-imidazole
Synonyms
RS 35887-10-3 RS-35887-10-3 RS35887-10-3
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.4286 mL 12.1430 mL 24.2860 mL
5 mM 0.4857 mL 2.4286 mL 4.8572 mL
10 mM 0.2429 mL 1.2143 mL 2.4286 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us