yingweiwo

c-Kit-IN-1

Alias: 1225278-16-9; c-Kit-IN-1; 1-N'-[2,5-difluoro-4-[2-(1-methylpyrazol-4-yl)pyridin-4-yl]oxyphenyl]-1-N-phenylcyclopropane-1,1-dicarboxamide; N-(2,5-Difluoro-4-((2-(1-methyl-1H-pyrazol-4-yl)pyridin-4-yl)oxy)phenyl)-N-phenylcyclopropane-1,1-dicarboxamide; N'1-(2,5-DIFLUORO-4-{[2-(1-METHYLPYRAZOL-4-YL)PYRIDIN-4-YL]OXY}PHENYL)-N1-PHENYLCYCLOPROPANE-1,1-DICARBOXAMIDE; PDGFR inhibitor 1; SCHEMBL2450218; CHEMBL4303619;
Cat No.:V33524 Purity: ≥98%
c-Kit-IN-1 is a potent inhibitor of c-Kit and c-Met with IC50 <200 nM.
c-Kit-IN-1
c-Kit-IN-1 Chemical Structure CAS No.: 1225278-16-9
Product category: New2
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
50mg
Other Sizes

Other Forms of c-Kit-IN-1:

  • Ripretinib (DCC-2618)
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
c-Kit-IN-1 is a potent inhibitor of c-Kit and c-Met with IC50 <200 nM.
Biological Activity I Assay Protocols (From Reference)
Targets
PDGFR; WT KIT (IC50 = 4 nM); D816H KIT (IC50 = 5 nM); V654A KIT (IC50 = 8 nM); D816V KIT (IC50 = 14 nM)
ln Vitro
c-Kit-IN-1 is an inhibitor of c-Kit and c-Met, taken from patent 2010051373A1, compound example 45, IC50 <200 nM. c-Kit-IN-1 also suppresses KDR, PDGFR α and β, with IC50 of <2 μM, <10 μM and <10 μM respectively[1].
ln Vivo
In the GIST T1 xenograft model, DCC-2618 administration at 50 mg/kg results in an ED90 for KIT phosphorylation inhibition, which corresponds to an EC90 concentration of roughly 470 ng/mL. This oral dose causes nearly total tumor stasis when taken twice a day. In a KIT exon 17 N822K AML xenograft model and a patient-derived xenograft (PDX) GIST expressing KIT exon 11 delW557K558/exon 17 Y823D, this dosage of DCC-2618 results in tumor regressions[1]. DCC-2618 inhibits PDGFRA- and KIT-driven tumor growth in xenograft studies, including KIT exon 17 mutants present in AML (N822K), GIST (Y823D), and mastocytosis (D816V) models[3].
Enzyme Assay
In order to assess KIT and BTK signaling, ROSAKIT WT, ROSAKIT D816V, HMC-1.1, and HMC-1.2 cells were incubated for 4 hours at 37°C in either control medium or DCC-2618 (0.5–5 μM). Western blotting was done essentially according to other instructions. In order to assess the downstream signaling pathways of KIT, HMC-1.1, HMC-1.2, ROSAKIT WT, and ROSAKIT D816V cells were initially pre-cultured for an entire night in Iscove-modified Dulbecco medium that was devoid of stem cell factor and fetal calf serum. Then, for 90 minutes at 37°C, DCC-2618 (0.001–10 μM) was applied to 106 cells from each line. Following the course of treatment, ROSAKIT WT cells were stimulated for 10 minutes at room temperature using 10% of the supernatants of Chinese hamster ovary cells transfected with the murine scf (kl) gene (CHO-KL). Western blotting was then carried out essentially in the same manner as previously mentioned.
Cell Assay
In order to assess KIT and BTK signaling, HMC-1.1, HMC-1.2, ROSA (KIT WT), and ROSA (KIT D816V) cells are incubated for 4 hours at 37°C in either control medium or DCC-2618 (0.5–5 μM). One method used is western blotting.
Ripretinib (DCC-2618) was tested for inhibition of KIT isoforms using a standard PK/LDH coupled spectrophotometric assay. CHO cells were transiently transfected to express mutant KIT or PDGFRα constructs. Transfected cells were treated with a range of DCC-2618 and levels of phosphorylated KIT or PDGFRα in cell lysates were determined by ELISA or western blot. Cell proliferation of several cell lines was measured using the fluorescent dye resazurin. Experiments were performed in triplicate.[1]
Western blotting[2]
For evaluation of KIT and BTK signaling, HMC-1.1, HMC-1.2, ROSAKIT WT and ROSAKIT D816V cells were incubated in control medium or in Ripretinib (DCC-2618) (0.5–5 μM) for 4 h at 37°C. Western blotting was performed essentially as described elsewhere. For evaluation of downstream signaling pathways of KIT, HMC-1.1, HMC-1.2, ROSAKIT WT and ROSAKIT D816V cells were first pre- incubated overnight in Iscove modified Dulbecco medium devoid of fetal calf serum and of stem cell factor. Cells (106) from each line were then treated with DCC-2618 (0.001–10 μM) for 90 min at 37°C. At the end of the treatment, ROSAKIT WT cells were stimulated with stem cell factor-containing supernatants (10%) of Chinese hamster ovary cells transfected with the murine scf (kl) gene (CHO-KL) at room temperature for 10 min. Thereafter, Western blotting was performed essentially as described previously.
Animal Protocol
xenograft models (mice)
100 mg/kg/day or 25 mg/kg/day or 50 mg/kg BID
oral
ADME/Pharmacokinetics
Absorption
Ripretinib is absorbed in the gastrointestinal tract and Tmax is achieved in 4 hours, with steady-state concentrations reached within 14 days.

Route of Elimination
Ripretinib is 34% excreted in the feces and 0.2% excreted in the urine.

Volume of Distribution
The mean volume of distribution of ripretinib is 307 L.

Clearance
The mean apparent clearance of ripretinib is 15.3 L/hour.
Metabolism / Metabolites
Ripretinib is metabolized by the CYP3A subfamily of enzymes with contributions from CYP2D6 and CYP2E1 to its active metabolite, DP-5439.
Biological Half-Life
The average half-life of ripretinib is 14.8 hours.
Toxicity/Toxicokinetics
Hepatotoxicity
In the prelicensure placebo-controlled clinical trial in patients with refractory and extensively treated GIST, ALT elevations arose in 13% of ripretinib- vs 5% of placebo-treated subjects. ALT elevations were generally transient and mild, and were above 5 times the ULN in only 1% of treated patients and did not require dose modification or discontinuation. Bilirubin elevations were reported in 22% of ripretinib treated patients but only 7.5% of placebo controls. The bilirubin elevations were transient and mild, but were not characterized as to their timing, severity and whether conjugated or unconjugated (direct or indirect). In the open label and controlled trials supporting the approval of ripretinib, there were no instances of clinically apparent liver injury, hepatic failure, or deaths from liver injury. Since its approval in the United States and Europe, there have been no reported cases of clinically apparent liver injury associated with ripretinib therapy.
Likelihood score: E (unlikely cause of clinically apparent liver injury).
Effects During Pregnancy and Lactation
◉ Summary of Use during Lactation
No information is available on the use of ripretinib during breastfeeding. Because ripretinib and its metabolite are more than 99% bound to plasma proteins, the amounts in milk are likely to be low. However, their half-lives are long. The manufacturer recommends that mothers should not breastfeed during treatment with ripretinib and for 1 week after the final dose.

◉ Effects in Breastfed Infants
Relevant published information was not found as of the revision date.

◉ Effects on Lactation and Breastmilk
Relevant published information was not found as of the revision date.
Protein Binding
Ripretinib is over 99% bound to albumin and alpha-1 acid glycoprotein.
References

[1]. Cancer Res (2015) 75 (15_Supplement): 2690.

[2]. Haematologica . 2018 May;103(5):799-809.

[3]. AACR Annual Meeting. 2018: Abstract 3925; Poster Section 39, Board 5.

Additional Infomation
Ripretinib is a kinase inhibitor used for the treatment of advanced gastrointestinal stromal tumor (GIST) that has not adequately responded to other kinase inhibitors such as [sunitinib] and [imatinib]. Ripretinib, also known as Qinlock, is manufactured by Deciphera Pharmaceuticals and was initially approved by the FDA on May 15, 2020. It is the first drug approved as a fourth-line therapy in the specific setting of prior treatment with a minimum of 3 other kinase inhibitors.

Ripretinib is a Kinase Inhibitor. The mechanism of action of ripretinib is as a Stem Cell Factor (KIT) Receptor Inhibitor, and Platelet-derived Growth Factor alpha Receptor Inhibitor, and Cytochrome P450 2C8 Inhibitor, and P-Glycoprotein Inhibitor, and Breast Cancer Resistance Protein Inhibitor.
Ripretinib is a multikinase inhibitor that is used to treat refractory forms of advanced gastrointestinal stromal tumors. Serum aminotransferase elevations occur in a small proportion of patients treated with ripretinib, but episodes of clinically apparent liver injury with jaundice have not been reported with its use.

Ripretinib is an orally bioavailable switch pocket control inhibitor of wild-type and mutated forms of the tumor-associated antigens (TAA) mast/stem cell factor receptor (SCFR) KIT and platelet-derived growth factor receptor alpha (PDGFR-alpha; PDGFRa), with potential antineoplastic activity. Upon oral administration, ripretinib targets and binds to both wild-type and mutant forms of KIT and PDGFRa specifically at their switch pocket binding sites, thereby preventing the switch from inactive to active conformations of these kinases and inactivating their wild-type and mutant forms. This abrogates KIT/PDGFRa-mediated tumor cell signaling and prevents proliferation in KIT/PDGFRa-driven cancers. DCC-2618 also inhibits several other kinases, including vascular endothelial growth factor receptor type 2 (VEGFR2; KDR), angiopoietin-1 receptor (TIE2; TEK), PDGFR-beta and macrophage colony-stimulating factor 1 receptor (FMS; CSF1R), thereby further inhibiting tumor cell growth. KIT and PDGFRa are tyrosine kinase receptors that are upregulated or mutated in a variety of cancer cell types; mutated forms play a key role in the regulation of tumor cell proliferation and resistance to chemotherapy.
Drug Indication
Ripretinib is indicated to treat adults diagnosed with advanced gastrointestinal stromal tumor (GIST) who have had prior therapy with at least 3 kinase inhibitors, including with [imatinib].

Qinlock is indicated for the treatment of adult patients with advanced gastrointestinal stromal tumour (GIST) who have received prior treatment with three or more kinase inhibitors, including imatinib.
View More

Pharmacodynamics
As a broad-spectrum kinase inhibitor, ripretinib inhibits various gene mutations, increasing progression-free survival in patients with advanced gastrointestinal stromal tumors (GIST). It is effective in treating mutations that are resistant to chemotherapy with other kinase inhibitors, such as imatinib. Ripretinib has the propensity to cause cardiac dysfunction and new primary cutaneous malignancy. It is important to measure cardiac ejection fraction before and during treatment as well as to perform regular dermatological assessments.


Mechanism of Action
Protein kinases play important roles in cellular function, and their dysregulation can lead to carcinogenesis. Ripretinib inhibits protein kinases including wild type and mutant platelet-derived growth factor receptor A (PDGFRA) and KIT that cause the majority of gastrointestinal stromal tumor (GIST). In vitro, ripretinib has been shown to inhibit PDGFRB, BRAF, VEGF, and TIE2 genes. Ripretinib binds to KIT and PDGFRA receptors with mutations on the exons 9, 11, 13, 14, 17 and 18 (for KIT mutations), and exons 12, 14 and 18 (for PDGFRA mutations). The “switch pocket” of a protein kinase is normally bound to the activation loop, acting as an “on-off switch” of a kinase. Ripretinib boasts a unique dual mechanism of action of binding to the kinase switch pocket as well as the activation loop, thereby turning off the kinase and its ability to cause dysregulated cell growth.
DCC-2618 inhibited various forms of KIT with nanomolar potency: WT (IC50 4 nM), V654A (8 nM), T670I (18 nM), D816H (5 nM), D816V (14 nM). In CHO cells transiently transfected with both single and double (primary/secondary) KIT mutants, DCC-2618 robustly inhibited exon 17, exon 9/13, exon 9/14, and exon 9/17 KIT mutants, as well as exon 11/17 KIT mutants, including exon 17 D816V, D816G, D820A, D820E, D820Y, N822K, N822Y, N822H, and Y823D primary or secondary mutations.
DCC-2618 inhibited wild type KIT phosphorylation in the MO7e cell line (IC50 36 nM). DCC-2618 potently inhibited KIT activation in human GIST cell lines, including GIST T1 (exon 11 deletion, IC50 2 nM), GIST 430 (exon 11 deletion/exon 13 V654A, IC50 7 nM), and GIST 48 (exon 11 V560D/exon 17 D820A, IC50 53 nM). In the murine mastocytosis P815 cell line expressing the exon 17 D816Y mutation, DCC-2618 potently inhibited cell proliferation (IC50 2 nM).
In vivo, DCC-2618 administration at 50 mg/kg afforded an ED90 for inhibition of KIT phosphorylation in the GIST T1 xenograft model, corresponding to an EC90 concentration of ∼ 470 ng/mL. When give twice daily, this oral dose resulted in almost complete tumor stasis. This dose of DCC-2618 produced tumor regressions in a patient derived xenograft (PDX) GIST expressing KIT exon 11 delW557K558/exon 17 Y823D, and also in a KIT exon 17 N822K AML xenograft model.
Conclusion: DCC-2618 is a potent inhibitor of singly and doubly mutated KIT characterized by primary exon 9 or exon 11 mutations paired with secondary mutations in exons 13, 14 or 17. DCC-2618 inhibits exon 17 mutations, including the D816V mutation refractory to currently marketed KIT inhibitors. DCC-2618 has the potential to treat KIT mutant-driven cancers including GIST, systemic mastocytosis, AML, or melanoma. DCC-2618 has been selected for formal IND-enabling clinical development.[1]
Systemic mastocytosis is a complex disease defined by abnormal growth and accumulation of neoplastic mast cells in various organs. Most patients exhibit a D816V-mutated variant of KIT, which confers resistance against imatinib. Clinical problems in systemic mastocytosis arise from mediator-related symptoms and/or organ destruction caused by malignant expansion of neoplastic mast cells and/or other myeloid cells in various organ systems. DCC-2618 is a spectrum-selective pan KIT and PDGFRA inhibitor which blocks KIT D816V and multiple other kinase targets relevant to systemic mastocytosis. We found that DCC-2618 inhibits the proliferation and survival of various human mast cell lines (HMC-1, ROSA, MCPV-1) as well as primary neoplastic mast cells obtained from patients with advanced systemic mastocytosis (IC50 <1 μM). Moreover, DCC-2618 decreased growth and survival of primary neoplastic eosinophils obtained from patients with systemic mastocytosis or eosinophilic leukemia, leukemic monocytes obtained from patients with chronic myelomonocytic leukemia with or without concomitant systemic mastocytosis, and blast cells obtained from patients with acute myeloid leukemia. Furthermore, DCC-2618 was found to suppress the proliferation of endothelial cells, suggesting additional drug effects on systemic mastocytosis-related angiogenesis. Finally, DCC-2618 was found to downregulate IgE-mediated histamine release from basophils and tryptase release from mast cells. Together, DCC-2618 inhibits growth, survival and activation of multiple cell types relevant to advanced systemic mastocytosis. Whether DCC-2618 is effective in vivo in patients with advanced systemic mastocytosis is currently under investigation in clinical trials.[2]

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C26H21F2N5O3
Molecular Weight
489.4735
Exact Mass
489.161
CAS #
1225278-16-9
Related CAS #
1442472-39-0
PubChem CID
46208890
Appearance
White to off-white solid powder
Density
1.40±0.1 g/cm3 (20 ºC 760 Torr)
LogP
5.632
Hydrogen Bond Donor Count
2
Hydrogen Bond Acceptor Count
7
Rotatable Bond Count
7
Heavy Atom Count
36
Complexity
794
Defined Atom Stereocenter Count
0
InChi Key
WWOXKWLDMLMYQY-UHFFFAOYSA-N
InChi Code
InChI=1S/C26H21F2N5O3/c1-33-15-16(14-30-33)21-11-18(7-10-29-21)36-23-13-19(27)22(12-20(23)28)32-25(35)26(8-9-26)24(34)31-17-5-3-2-4-6-17/h2-7,10-15H,8-9H2,1H3,(H,31,34)(H,32,35)
Chemical Name
1-N'-[2,5-difluoro-4-[2-(1-methylpyrazol-4-yl)pyridin-4-yl]oxyphenyl]-1-N-phenylcyclopropane-1,1-dicarboxamide
Synonyms
1225278-16-9; c-Kit-IN-1; 1-N'-[2,5-difluoro-4-[2-(1-methylpyrazol-4-yl)pyridin-4-yl]oxyphenyl]-1-N-phenylcyclopropane-1,1-dicarboxamide; N-(2,5-Difluoro-4-((2-(1-methyl-1H-pyrazol-4-yl)pyridin-4-yl)oxy)phenyl)-N-phenylcyclopropane-1,1-dicarboxamide; N'1-(2,5-DIFLUORO-4-{[2-(1-METHYLPYRAZOL-4-YL)PYRIDIN-4-YL]OXY}PHENYL)-N1-PHENYLCYCLOPROPANE-1,1-DICARBOXAMIDE; PDGFR inhibitor 1; SCHEMBL2450218; CHEMBL4303619;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~100 mg/mL (~204.30 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (5.11 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (5.11 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (5.11 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.0430 mL 10.2151 mL 20.4303 mL
5 mM 0.4086 mL 2.0430 mL 4.0861 mL
10 mM 0.2043 mL 1.0215 mL 2.0430 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT03673501 Active
Recruiting
Drug: DCC-2618
Tablets
Drug: Sunitinib
Gastrointestinal Stromal Tumors Deciphera Pharmaceuticals LLC February 11, 2019 Phase 3
NCT05697107 Active
Recruiting
Drug: Ripretinib Oral Tablet Gastrointestinal Stromal Tumors Peking University May 20, 2021
NCT05132738 Recruiting Drug: Ripretinib treatment Gastrointestinal Stromal Tumors RenJi Hospital August 1, 2021 Not Applicable
NCT05734105 Recruiting Drug: Ripretinib
Drug: Sunitinib
GIST Deciphera Pharmaceuticals LLC November 2023 Phase 3
NCT05957367 Recruiting Drug: Ripretinib
Drug: DCC-3116
GIST
Colorectal Cancer
Deciphera Pharmaceuticals LLC September 28, 2023 Phase 1
Phase 2
Contact Us