Size | Price | |
---|---|---|
500mg | ||
1g | ||
Other Sizes |
Calcimycin hemicalcium salt (A-23187; A23187) is a natural antibiotic isolated from Streptomyces chartreusensis. It inhibits the growth of Gram-positive bacteria and some fungi. Calcimycin is a unique divalent cation ionophore (like calcium and magnesium) and can induce Ca2+-dependent cell death by increasing intracellular calcium concentration. The pyrrole polyether antibiotic calcimycin (A23187) is a rare ionophore that is specific for divalent cations. It is widely used as a biochemical and pharmacological tool because of its multiple, unique biological effects.
Targets |
Divalent cation ionophore; antibiotic
|
---|---|
ln Vitro |
In a P2RX7-dependent mechanism, intracellular calcium-regulated autophagy is induced by calcimycin hemicalcium salt (A-23187 calcium), which facilitates mycobacterial death [4].
|
ln Vivo |
Protein leakage is caused by calcimycin hemicalcium salt (A-23187 calcium) at 2.5 or 7.5 nM; intrathoracic [5].
A23187-induced pleurisy in the mouse was demonstrated in this study. The protein leakage, leukocyte accumulation, LTB4 and PGE2 production in the pleural cavity of mice were increased by A23187 in a dose-dependent manner. At 7.5 nmole A23187 intrapleural injection, the protein level peaked at 0.5-2 h, PMN leukocytes accumulation peaked at 3-4 h, and LTB4 and PGE2 production peaked at 0.5-1 h. In this in vivo model we investigated the anti-inflammatory effect of norathyriol, isolated from Tripterospermum lanceolatum. A23187-induced protein leakage was reduced by norathyriol (ID50 was about 30.6 mg/kg i.p.), indomethacin and BW755C. A23187-induced PMN leukocytes accumulation was suppressed by norathyriol (ID50 was about 16.8 mg/kg, i.p.) and BW755C, while enhanced by indomethacin. Like BW755C, norathyriol reduced both LTB4 and PGE2 production (ID50 was about 18.6 and 29.1 mg/kg i.p., respectively), while indomethacin reduced PGE2 but not LTB4 generation. We also demonstrated the analgesic effect of norathyriol on the acetic acid-induced writhing response. Acetic acid-induced writhing response was depressed by norathyriol (ID50 was about 27.9 mg/kg i.p.), indomethacin and ibuprofen. These results suggest that norathyriol, like BW755C, might be a dual, yet weak, cyclooxygenase and lipoxygenase pathway blocker. The inhibitory effect of norathyriol on the A23187-induced pleurisy and acetic acid-induced writhing response in mice is proposed to be dependent on the reduction of eicosanoids mediators formation in the inflammatory site.[5] |
Enzyme Assay |
The pyrrole polyether antibiotic calcimycin (A23187) is a rare ionophore that is specific for divalent cations. It is widely used as a biochemical and pharmacological tool because of its multiple, unique biological effects. Here we report on the cloning, sequencing, and mutational analysis of the 64-kb biosynthetic gene cluster from Streptomyces chartreusis NRRL 3882. Gene replacements confirmed the identity of the gene cluster, and in silico analysis of the DNA sequence revealed 27 potential genes, including 3 genes for the biosynthesis of the α-ketopyrrole moiety, 5 genes that encode modular type I polyketide synthases for the biosynthesis of the spiroketal ring, 4 genes for the biosynthesis of 3-hydroxyanthranilic acid, an N-methyltransferase tailoring gene, a resistance gene, a type II thioesterase gene, 3 regulatory genes, 4 genes with other functions, and 5 genes of unknown function. We propose a pathway for the biosynthesis of calcimycin and assign the genes to the biosynthesis steps. Our findings set the stage for producing much desired calcimycin derivatives using genetic modification instead of chemical synthesis.[1]
|
Cell Assay |
Phenotypic screening led to the identification of calcimycin as a potent inhibitor of Mycobacterium bovis BCG (M. bovis BCG) growth in vitro and in THP-1 cells. In the present study, we aim to decipher the mechanism of antimycobacterial activity of calcimycin. We noticed that treatment with calcimycin led to up-regulation of different autophagy markers like Beclin-1, autophagy-related gene (Atg) 7, Atg 3 and enhanced microtubule-associated protein 1A/1B-light chain 3-I (LC3-I) to LC3-II conversion in macrophages. This calcimycin-mediated killing of intracellular M. smegmatis and M. bovis BCG was abrogated in the presence of 3-methyladenine (3-MA). We also demonstrate that calcimycin binding with purinergic receptor P2X7 (P2RX7) led to increase in intracellular calcium level that regulates the extracellular release of ATP. ATP was able to regulate calcimycin-induced autophagy through P2RX7 in an autocrine fashion. Blocking of either P2RX7 expression by 1-[N,O-bis(5-Isoquinolinesulfonyl)-N-methyl-l-tyrosyl]-4-phenylpiperazine (KN-62) or reducing intracellular calcium levels by 1,2-Bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetra (acetoxy-methyl) ester (BAPTA-AM) abrogated the antimycobacterial activity of calcimycin. Taken together, these results showed that calcimycin exerts its antimycobacterial effect by regulating intracellular calcium-dependent ATP release that induces autophagy in a P2RX7 dependent manner.[4]
|
Animal Protocol |
Animal/Disease Models: Mouse (ICR, 25-30 g) [5]
Doses: 2.5 or 7.5 nM Route of Administration: Intrapleural injection Experimental Results: Protein in the pleural cavity 2 hrs (hrs (hours)) after challenge with 2.5 nM or 3 hrs (hrs (hours)) after challenge with 7.5 nM Levels correspond to approximately half of their corresponding peak values. |
References |
|
Additional Infomation |
Apoptotic cell volume decrease (AVD) and exposure of phosphatidylserine (PtdSer) at the cell surface are early events in apoptosis. However, the ion channels responsible for AVD, and their relationship to PtdSer translocation and cell death are poorly understood. Real-time analysis of calcium-induced apoptosis in lymphocytes and thymocytes showed that AVD occurs rapidly, and precedes PtdSer translocation. Blockers of the K(+) channel IKCa1 completely inhibited AVD. Blockade of IKCa1, and hence AVD, also completely prevented PtdSer translocation and cell death. Thus, IKCa1-mediated AVD is the earliest-defined essential step in calcium-induced apoptosis, required for both PtdSer translocation and cell death.[2]
Cellular stress responses often involve elevation of cytosolic calcium levels, and this has been suggested to stimulate autophagy. Here, however, we demonstrated that agents that alter intracellular calcium ion homeostasis and induce ER stress-the calcium ionophore A23187 and the sarco/endoplasmic reticulum Ca (2+)-ATPase inhibitor thapsigargin (TG)-potently inhibit autophagy. This anti-autophagic effect occurred under both nutrient-rich and amino acid starvation conditions, and was reflected by a strong reduction in autophagic degradation of long-lived proteins. Furthermore, we found that the calcium-modulating agents inhibited autophagosome biogenesis at a step after the acquisition of WIPI1, but prior to the closure of the autophagosome. The latter was evident from the virtually complete inability of A23187- or TG-treated cells to sequester cytosolic lactate dehydrogenase. Moreover, we observed a decrease in both the number and size of starvation-induced EGFP-LC3 puncta as well as reduced numbers of mRFP-LC3 puncta in a tandem fluorescent mRFP-EGFP-LC3 cell line. The anti-autophagic effect of A23187 and TG was independent of ER stress, as chemical or siRNA-mediated inhibition of the unfolded protein response did not alter the ability of the calcium modulators to block autophagy. Finally, and remarkably, we found that the anti-autophagic activity of the calcium modulators did not require sustained or bulk changes in cytosolic calcium levels. In conclusion, we propose that local perturbations in intracellular calcium levels can exert inhibitory effects on autophagy at the stage of autophagosome expansion and closure.[3] |
Molecular Formula |
C29H37N3O6.1/2CA
|
---|---|
Molecular Weight |
563.70
|
Exact Mass |
1084.483
|
CAS # |
59450-89-4
|
Related CAS # |
Calcimycin;52665-69-7;Calcimycin hemimagnesium;72124-77-7; Calcimycin hemicalcium salt;59450-89-4; 76455-48-6 (bromo)
|
PubChem CID |
45051687
|
Appearance |
Typically exists as solid at room temperature
|
Hydrogen Bond Donor Count |
4
|
Hydrogen Bond Acceptor Count |
16
|
Rotatable Bond Count |
16
|
Heavy Atom Count |
77
|
Complexity |
1890
|
Defined Atom Stereocenter Count |
14
|
SMILES |
CC1CCC2(C(CC(C(O2)C(C)C(=O)C3=CC=CN3)C)C)OC1CC4=NC5=C(O4)C=CC(=C5C(=O)[O-])NC.CC1CCC2(C(CC(C(O2)C(C)C(=O)C3=CC=CN3)C)C)OC1CC4=NC5=C(O4)C=CC(=C5C(=O)[O-])NC.[Ca+2]
|
InChi Key |
LAQWEYASNNRUGY-UIOMRPQBSA-L
|
InChi Code |
InChI=1S/2C29H37N3O6.Ca/c2*1-15-10-11-29(17(3)13-16(2)27(38-29)18(4)26(33)20-7-6-12-31-20)37-22(15)14-23-32-25-21(36-23)9-8-19(30-5)24(25)28(34)35;/h2*6-9,12,15-18,22,27,30-31H,10-11,13-14H2,1-5H3,(H,34,35);/q;;+2/p-2/t2*15-,16-,17-,18-,22-,27+,29+;/m11./s1
|
Chemical Name |
calcium;5-(methylamino)-2-[[(2S,3R,5R,6S,8R,9R)-3,5,9-trimethyl-2-[(2S)-1-oxo-1-(1H-pyrrol-2-yl)propan-2-yl]-1,7-dioxaspiro[5.5]undecan-8-yl]methyl]-1,3-benzoxazole-4-carboxylate
|
Synonyms |
Calcimycin hemicalcium salt; Calcimycin (hemicalcium salt); Calcium Ionophore A23187 hemicalcium salt; 59450-89-4; Calimycin hemicalcium salt; A23187 hemicalcium salt; A-23187 (hemicalcium salt);Antibiotic A-23187 (hemicalcium salt);
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 1.7740 mL | 8.8700 mL | 17.7399 mL | |
5 mM | 0.3548 mL | 1.7740 mL | 3.5480 mL | |
10 mM | 0.1774 mL | 0.8870 mL | 1.7740 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.