Size | Price | Stock | Qty |
---|---|---|---|
1mg |
|
||
Other Sizes |
|
Calcitriol D6 is the deuterated form of Calcitriol (1,25-Dihydroxyvitamin D3; Rocaltrol), which is is the metabolically/hormonally active form of vitamin D and a vitamin D receptor (VDR) agonist. Calcitriol is converted to metabolites more potent and rapidly acting than other forms of Vitamin D. Calcitriol has played an important role in mineral and skeletal homeostasis by regulating the differentiation, growth and the function of the cell immune system.
ADME/Pharmacokinetics |
Absorption, Distribution and Excretion
Many vitamin D analogs are readily absorbed from the GI tract following oral administration if fat absorption is normal. The presence of bile is required for absorption of ergocalciferol and the extent of GI absorption may be decreased in patients with hepatic, biliary, or GI disease (e.g., Crohn's disease, Whipple's disease, sprue). Because vitamin D is fat soluble, it is incorporated into chylomicrons and absorbed via the lymphatic system; approximately 80% of ingested vitamin D appears to be absorbed systemically through this mechanism, principally in the small intestine. Although some evidence suggested that intestinal absorption of vitamin D may be decreased in geriatric adults, other evidence did not show clinically important age-related alterations in GI absorption of the vitamin in therapeutic doses. It currently is not known whether aging alters the GI absorption of physiologic amounts of vitamin D. /Vitamin D analogs/ After oral administration of calcitriol, there is about a 2-hour lag-time before calcium absorption in the GI tract increases. Maximal hypercalcemic effect occurs in about 10 hours, and the duration of action of calcitriol is 3-5 days. Time to peak serum concentration: Oral: Approximately 3 to 6 hours. The primary route of excretion of vitamin D is the bile; only a small percentage of an administered dose is found in urine. /Vitamin D/ For more Absorption, Distribution and Excretion (Complete) data for 1,25-DIHYDROXYCHOLECALCIFEROL (10 total), please visit the HSDB record page. Metabolism / Metabolites Calcitriol is the active form of vitamin D3 (cholecalciferol). The natural or endogenous supply of vitamin D in man mainly depends on ultraviolet light for conversion of 7-dehydrocholesterol to vitamin D3 in the skin. Vitamin D3 must be metabolically activated in the liver and the kidney before it is fully active on its target tissues. The initial transformation is catalyzed by a vitamin D3-25-hydroxylase enzyme present in the liver, and the product of this reaction is 25-(OH)D3 (calcifediol). The latter undergoes hydroxylation in the mitochondria of kidney tissue, and this reaction is activated by the renal 25-hydroxyvitamin D3-1-a-hydroxylase to produce 1,25-(OH)2D3 (calcitriol), the active form of vitamin D3. 1,25-Dihydroxycholecalciferol (calcitriol) and 1,25-dihydroxyergocalciferol appear to be metabolized to their respective trihydroxy metabolites (i.e., 1,24,25-trihydroxycholecalciferol, 1,24,25-trihydroxyergocalciferol) and to other compounds. The principal metabolite excreted in urine is calcitroic acid, which is more water soluble. Although all the metabolites of cholecalciferol and ergocalciferol have not been identified, hepatic microsomal enzymes may be involved in degrading metabolites of ergocalciferol and cholecalciferol. Calcitriol /(1,25-dihydroxy-vitamin D)/ is hydroxylated to 1,24,25-(OH)3-D by a renal hydroxylase that is induced by calcitriol and suppressed by those factors that stimulate the 25-OHD-1-alpha-hydroxylase. This enzyme also hydroxylates 25-OHD to form 24,25-(OH)2D. Both 24-hydroxylated compounds are less active than calcitriol and presumably represent metabolites destined for excretion. Side chain oxidation of calcitriol also occurs. To evaluate the relation between daily and fasting urinary calcium excretion and serum 1,25-dihydroxyvitamin D (II) concentrations, 6 healthy men were studied during control and during chronic oral calcitrol (I) administration (0.6, 1.2, or 1.8 nmols every 6 hours for 6-12 days) while they ate normal and low calcium diets (19.2 or 4.2 mmols Ca/day). Daily urinary calcium excretion was directly related to serum II concentrations, but increased more while subjects ate the normal calcium diet than when eating the low calcium diet. During I and ingestion of the low calcium diet, daily urinary calcium excretion averaged 7.32 mmole/day, exceeding the dietary calcium intake. Fasting urinary calcium/creatinine exceeded 0.34 mmol/mmol (the upper limit of normal) on either diet. When serum II concentrations are elevated, a high fasting urinary calcium/creatinine or high daily urinary calcium excretion, even on a low calcium diet, is insufficient criteria for the documentation of a renal calcium leak. For more Metabolism/Metabolites (Complete) data for 1,25-DIHYDROXYCHOLECALCIFEROL (7 total), please visit the HSDB record page. Biological Half-Life Plasma half-life: 3 to 6 hours. |
---|---|
Toxicity/Toxicokinetics |
Effects During Pregnancy and Lactation
◉ Summary of Use during Lactation Calcitriol is the normal physiologically active form of vitamin D, 1,25-dihydroxyvitamin D. Several women with hypocalcemia have successfully breastfed during breastfeeding, with sometimes fluctuating serum calcium levels. Limited data indicate that its use in nursing mothers in appropriately adjusted doses does not affect the breastfed infant. If the mother requires calcitriol, it is not a reason to discontinue breastfeeding. Calcitriol and calcium dosage requirements are usually reduced during lactation in women with hypoparathyroidism. ◉ Effects in Breastfed Infants A woman with hypoparathyroidism breastfed her infant from week 1 to week 32 postpartum while taking calcitriol. The dose was initially 0.5 mcg daily, but was decreased to 0.25 mcg daily after 8 weeks. The infant thrived during breastfeeding and had normal serum calcium levels at 1 and 3 weeks and 3 months of age. A woman breastfed infants after two pregnancies while taking calcitriol in doses of 0.75 and 1 mcg daily. There were no reports of adverse reactions. A woman breastfed her newborn infant for 9 days while taking calcitriol 0.5 mcg three times daily. Calcitriol was stopped at that time because of hypercalcemia, but restarted at 40 days postpartum in low doses that were gradually increased until the prepregnancy dosage of 1.5 mcg daily was reached just before weaning at 12.5 months postpartum. A woman with discoid lupus was taking calcitriol 0.25 mcg every 2 days and several other medications concurrently. Her infant was breastfed for 12 months and followed up at 15 months of age. No adverse effects were reported during breastfeeding and the infant was growing and developing normally at 15 months of age. A nursing mother with autosomal dominant hypoparathyroidism type 1 was treated with teriparatide for 8 months postpartum then calcitriol 0.5 mcg twice daily was substituted. She breastfed her infant exclusively for 6 months then with supplementation to 1 year. Her infant had no change in serum calcium when maternal calcitriol was begun. The mother began weaning at 11 months and at 1 year of age weaning was complete. Growth and development were normal at 1.5 years of age. ◉ Effects on Lactation and Breastmilk Relevant published information was not found as of the revision date. |
References | |
Additional Infomation |
Mechanism of Action
Ergocalciferol and doxercalciferol (1-hydroxyergocalciferol); cholecalciferol and calcifediol (25-hydroxycholecalciferol); and dihydrotachysterol in their activated forms (1,25-dihydroxyergocalciferol; 1,25-dihydroxycholecalciferol [calcitriol]; and 25-hydroxydihydrotachysterol; respectively), along with parathyroid hormone and calcitonin, regulate serum calcium concentrations; in addition to conversion to the active 1,25-dihydroxycholecalciferol, calcifediol also has intrinsic activity. Calcitriol (activated vitamin D) enhances the efficiency of intestinal calcium absorption along the entire small intestine, but principally in the duodenum and jejunum. Calcitriol also enhances phosphorus absorption along the entire small intestine, but principally in the jejunum and ileum. The activated forms of ergocalciferol, doxercalciferol, and cholecalciferol may have a negative feedback effect on parathyroid hormone (PTH) production. Calcitriol appears to act in intestine in manner that is analogous to the way steroid hormones such as estrogens act on target tissues. ... Cytosol of chicken intestinal cells contains a 3.7 S protein that binds calcitriol specifically and with high affinity. Formation of complex with this receptor facilitates transfer of calcitriol to nuclear chromatin. ... Calcitriol stimulates synthesis of RNA and at least two proteins in intestinal mucosa, alkaline phosphatase and a calcium-binding protein. ... It was proposed that the calcium-binding protein is involved in transport of calcium. ... /However/, it has been reported that calcitriol-induced stimulation of intestinal transport of phosphate precedes that of calcium, and it is possible that primary effect of the vitamin is on phosphate rather than calcium transport. The effects of 1,25-dihydroxyvitamin D3 (I) on the human promyelocytic leukemia cell line HL-60 were investigated. I induces the differentiation of HL-60 into mono- and multinucleated macrophage-like cells. Phenotypic change is evident within 24 hours and reaches a plateau at 72-96 hours of incubation. The changes are metabolite-specific and include adherence to substrate, acquisition of the morphological features of mature monocytes, a 4 to 6-fold enhancement in lysozyme synthesis and secretion, increase in the fraction of alpha-naphthyl acetate monocyte-associated cell surface antigens. Treated HL-60 cells acquire the capacity to bind and degrade bone matrix, 2 of the essential functional characteristics of osteoclasts and related bone-resorbing cells. Evidently, vitamin D3 enhances bone resorption and osteoclastogenesis in vivo by promoting the differentiation of precursor cells. For more Mechanism of Action (Complete) data for 1,25-DIHYDROXYCHOLECALCIFEROL (6 total), please visit the HSDB record page. |
Molecular Formula |
C27H44O3
|
---|---|
Molecular Weight |
416.63646
|
Exact Mass |
422.367
|
CAS # |
78782-99-7
|
Related CAS # |
Calcitriol;32222-06-3
|
PubChem CID |
2524
|
Appearance |
White to off-white solid powder
|
Melting Point |
111-115 °C
|
LogP |
5.704
|
Hydrogen Bond Donor Count |
3
|
Hydrogen Bond Acceptor Count |
3
|
Rotatable Bond Count |
6
|
Heavy Atom Count |
30
|
Complexity |
688
|
Defined Atom Stereocenter Count |
0
|
InChi Key |
GMRQFYUYWCNGIN-UHFFFAOYSA-N
|
InChi Code |
InChI=1S/C27H44O3/c1-18(8-6-14-26(3,4)30)23-12-13-24-20(9-7-15-27(23,24)5)10-11-21-16-22(28)17-25(29)19(21)2/h10-11,18,22-25,28-30H,2,6-9,12-17H2,1,3-5H3
|
Chemical Name |
5-[2-[1-(6-hydroxy-6-methylheptan-2-yl)-7a-methyl-2,3,3a,5,6,7-hexahydro-1H-inden-4-ylidene]ethylidene]-4-methylidenecyclohexane-1,3-diol
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month Note: This product is not stable in solution, please use freshly prepared working solution for optimal results. |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
DMSO : ~50 mg/mL (~118.30 mM)
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 2.4002 mL | 12.0008 mL | 24.0015 mL | |
5 mM | 0.4800 mL | 2.4002 mL | 4.8003 mL | |
10 mM | 0.2400 mL | 1.2001 mL | 2.4002 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.