Size | Price | Stock | Qty |
---|---|---|---|
1mg |
|
||
5mg |
|
||
10mg |
|
||
Other Sizes |
|
Toxicity/Toxicokinetics |
Toxicity Summary
The principal alkaloid of the family Calycanthaceae, calycanthine has long been recognized as a central convulsant. Convulsant actions of calycanthine is mediated, at least in part, by blocking the postsynaptic action of GABA as indicated by its inhibitory effect onthe binding of the radiolabeled cage convulsant, [35S]t-butylbicyclophosphorothionate. The alkaloid inhibited the potassium-stimulated release of [(3)H]GABA from slices of rat hippocampus with an ED(50) of approximately 21 microM. This effect appeared to be moderately selective since calycanthine at 100 microM had only a weak effect on the potassium-stimulated release of [(3)H]acetylcholine (15%) and no significant effects on the release of [(3)H]D-aspartate from hippocampal and cerebellar slices or the release of [(3)H]glycine from spinal cord slices. Calycanthine blocked the L-type calcium currents with an IC(50) of approximately 42 microM and also weakly inhibited the N-type calcium currents (IC(50) > 100 microM) from neuroblastoma X glioma cells, suggesting voltage-dependent calcium channel blockade as a possible mechanism for its inhibition of GABA and ACh release. Calycanthine was also found to directly inhibit GABA-mediated currents (K(B) approximately 135 microM) from human alpha(1)beta(2)gamma(2L) GABA(A) receptors expressed in Xenopus laevis oocytes but had no effect at 100 microM on human rho(1) GABA(c) receptors. Calycanthine may mediate its convulsant action predominantly by inhibiting the release of the inhibitory neurotransmitter GABA as a result of interactions with L-type Ca(2+) channels and by inhibiting GABA-mediated chloride currents at GABA(A) receptors. The properties of this alkaloid have also been investigated on the genesis, conduction, and transmission of the nerve impulse, using giant axons of the cockroach (Periplaneta americana). Calycanthine hydrochloride (10(-5) M), which did not alter nervous conduction in pre- and post-synaptic fibers, significantly reduced the efficacy of the synaptic transmission. (PMID: 1653964; PMID: 12831783) |
---|---|
References | |
Additional Infomation |
LSM-6401 is an aminoquinoline.
(+)-Calycanthine is found in herbs and spices. (+)-Calycanthine is an alkaloid from Calycanthus floridus (Carolina allspice) and other Calycanthus species. (+)-Calycanthine belongs to the family of Naphthyridines. These are compounds containing a naphthyridine moeity, a naphthalene in which a carbon atom has been replaced by a nitrogen in each of the two rings. The naphthyridine skeleton can also be described as an assembly two fused pyridine rings, which do not share their nitrogen atom. See also: Calycanthine (annotation moved to). |
Molecular Formula |
C22H26N4
|
---|---|
Molecular Weight |
346.4686
|
Exact Mass |
346.216
|
CAS # |
595-05-1
|
PubChem CID |
264115
|
Appearance |
Light yellow to yellow solid powder
|
Density |
1.29g/cm3
|
Boiling Point |
531.8ºC at 760mmHg
|
Melting Point |
245° (evac tube)
|
Flash Point |
310.3ºC
|
Index of Refraction |
1.711
|
LogP |
3.188
|
Hydrogen Bond Donor Count |
2
|
Hydrogen Bond Acceptor Count |
4
|
Rotatable Bond Count |
0
|
Heavy Atom Count |
26
|
Complexity |
531
|
Defined Atom Stereocenter Count |
0
|
InChi Key |
XSYCDVWYEVUDKQ-UHFFFAOYSA-N
|
InChi Code |
InChI=1S/C22H26N4/c1-25-13-11-22-16-8-4-5-9-17(16)23-19(25)21(22)12-14-26(2)20(22)24-18-10-6-3-7-15(18)21/h3-10,19-20,23-24H,11-14H2,1-2H3
|
Chemical Name |
21,24-dimethyl-3,12,21,24-tetrazahexacyclo[9.7.3.32,10.01,10.04,9.013,18]tetracosa-4,6,8,13,15,17-hexaene
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month Note: Please store this product in a sealed and protected environment (e.g. under nitrogen), avoid exposure to moisture and light. |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
DMSO : ~100 mg/mL (~288.63 mM)
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 2.8863 mL | 14.4313 mL | 28.8625 mL | |
5 mM | 0.5773 mL | 2.8863 mL | 5.7725 mL | |
10 mM | 0.2886 mL | 1.4431 mL | 2.8863 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.