Size | Price | Stock | Qty |
---|---|---|---|
5mg |
|
||
10mg |
|
||
25mg |
|
||
50mg |
|
||
100mg |
|
||
250mg |
|
||
500mg |
|
||
1g |
|
||
Other Sizes |
|
Purity: ≥98%
Targets |
Wnt/β-catenin; c-Met (IC50 = 0.13 nM)
|
|
---|---|---|
ln Vitro |
|
|
ln Vivo |
|
|
Enzyme Assay |
The assay buffer has the following contents: pH 7.8, 50 mM Tris-HCl, 10 mM MgCl2, 100 mM NaCl, 0.1 mg/ml BSA, and 5 mM DTT. Spotted on 384-well plates for HTS are 0.8 μL of 5 mM INCB28060 dissolved in DMSO. According to DMSO titration, a solvent concentration of 4% is the highest that can be tolerated. The INCB28060 plate is prepared by serial dilutions at three and eleven points in order to measure IC50s. The assay plate is transferred with 0.8 μL of INCB28060 in DMSO from the INCB28060 plate. DMSO has a final concentration of 2%. In assay buffer, solutions of 0.5 nM phosphorylated c-Met or 8 nM unphosphorylated c-Met are made. In an assay buffer containing 400 μM ATP (unphosphorylated c-Met) or 160 uM ATP (phosphorylated c-Met), a 1 mM stock solution of the peptide substrate Biotin-EQEDEPEGDYFEWLE-amide dissolved in DMSO is diluted to 1 μM. To start the reaction, add 20 μL of substrate solution per well after adding a 20 μL volume of enzyme solution (or assay buffer for the enzyme blank) to the corresponding wells in each plate. For ninety minutes, the plate is incubated at 25 °C with protection from light. To terminate the reaction, introduce 20 μL of a mixture comprising 45 mM EDTA, 50 mM Tris-HCl, 50 mM NaCl, 0.4 mg/ml BSA, 200 nM SA-APC, and 3 nM EUPy20. After incubating the plate at room temperature for 15-30 minutes, the Perkin Elmer Fusion α-FP instrument measures the homogenous time resolved fluorescence (HTRF). The following HTRF program settings are in use: 330/30 primary excitation filter 200 uSec for the primary window, 50 uSec for the primary delay, and 15 flashes total. Time to read well: 2000
|
|
Cell Assay |
In RPMI-1640 medium with 10% FBS, H441 cells are seeded and grown to full confluence. Using a P200 pipette tip, cells are scraped to create gaps. Next, in the presence of varied INCB28060 concentrations, cells are stimulated with 50 ng/mL recombinant human HGF to induce migration across the gap. Following an overnight incubation period, a semiqualitative evaluation of the inhibition of cell migration is carried out and representative photos are taken.
Cell viability assay[1] Optimal cell density used in the viability assay was predetermined for individual cell lines. To determine compound potency, cells were seeded into 96-well microplates at the appropriate density in media containing 1% to 2% FBS and supplemented with serial dilutions of INCB28060 in a final volume of 100 μL per well. After 72-hour incubation, 24 μL of CellTiter 96 AQueous One Solution was added to each well, and the plates were incubated for 2 hours in a 37°C incubator. The optical density was measured in the linear range using a microplate reader at 490 nm with wavelength correction at 650 nm. IC50 values were calculated using the GraphPad Prism Software. Soft agar colony formation assay[1] U-87MG or H441 cells were prepared at adequate densities in 6-well plates mixed with 0.5 mL top layer agar containing 0.3% agarose in appropriate culture medium and supplemented with 1% or 10% FBS, in the presence or absence of 50 ng/mL recombinant human HGF and INCB28060 at various concentrations. Cells were evenly laid over 1 mL solidified base layer agar containing 0.6% agarose in culture medium. The plates were incubated at 37°C in a humidified incubator supplied with 5% CO2. Cells were fed once a week with top agar containing appropriate concentrations of human HGF and INCB28060. The number and size of colonies were evaluated 2 to 3 weeks later when representative photographs were taken. Cell migration assay[1] H441 cells were seeded in RPMI-1640 medium containing 10% FBS and grown to complete confluence. Gaps were introduced by scraping cells with a P200 pipette tip. Cells were then stimulated with 50 ng/mL recombinant human HGF to induce migration across the gap in the presence of various concentrations of INCB28060. After an overnight incubation, representative photographs were taken and a semiqualitative assessment of inhibition of cell migration was conducted. Apoptosis assay[1] Cells were seeded in a 96-well plate and grown overnight in culture medium containing 0.5% FBS. Cells were then treated with INCB28060 at various concentrations for 24 hours. Apoptosis was measured using a DNA fragmentation–based Cell Death Detection ELISAplus kit according to the manufacturer's instructions. To measure PARP cleavage, cells were grown in 10 cm dishes and treated similarly with INCB28060 as described above. Protein extracts were then prepared and subjected to Western blot analysis using a rabbit anti-cleaved PARP (Asp214) antibody. |
|
Animal Protocol |
Eight-week-old female Balb/c nu/nu mice (Charles River) are inoculated subcutaneously with 4 × 106 tumor cells (S114 model) or with 5 × 106 tumor cells (U-87MG glioblastoma model).
3, 10, 30 mg/kg INCB28060 is orally dosed, twice each day. Efficacy studies[1] Tumor-bearing mice were dosed orally, twice each day with 1, 3, 10, or 30 mg/kg of free base INCB28060 reconstituted in 5% DMAC in 0.5% methylcellulose for up to 2 weeks. Body weights were monitored throughout the study as a gross measure of toxicity/morbidity. Tumor growth inhibition, expressed in percent, was calculated using the formula: (1 − [(volume (treated)/volume (vehicle)]) × 100. Pharmacodynamic analysis[1] For pharmacodynamic analysis, S114 tumor–bearing mice were monitored for tumor growth and then randomized into groups of 3 with average tumor sizes of approximately 300 to 500 mm3. For time course studies, mice were given a single oral dose of 3 mg/kg INCB28060 reconstituted in 5% DMAC in 0.5% methylcellulose and tumors were harvested at the indicated time points. For dose escalation studies, mice were given a single oral dose of INCB28060 at 0.03, 0.1, 0.3, 1, 3, or 10 mg/kg reconstituted in 5% DMAC in 0.5% methylcellulose and tumors were harvested 30 minutes after dosing. All tumors were processed for the determination of phospho-c-Met levels using the Human Phospho-HGFR/c-Met kit. The plasma concentration of INCB28060 was determined by LC/MS/MS analysis following retro-orbital or cardiac puncture blood collection. |
|
ADME/Pharmacokinetics |
Absorption, Distribution and Excretion
The oral bioavailability of capmatinib is estimated to be >70%. Following oral administration, maximum plasma concentrations are achieved within 1 to 2 hours (Tmax). Co-administration with a high-fat meal increased capmatinib AUC by 46% with no change in Cmax (as compared to fasted conditions), and co-administration with a low-fat meal had no clinically meaningful effects on exposure. Following oral administration of radiolabeled capmatinib, approximately 78% of the radioactivity is recovered in feces, of which ~42% is unchanged parent drug, and 22% is recovered in the urine, of which a negligible amount remains unchanged parent drug. The apparent volume of distribution at steady-state is 164 L. The mean apparent clearance of capmatinib at steady-state is 24 L/h. Metabolism / Metabolites Capmatinib undergoes metabolism primarily via CYP3A4 and aldehyde oxidase. Specific biotransformation pathways and metabolic products have yet to be elucidated. Biological Half-Life The elimination half-life is 6.5 hours. |
|
Toxicity/Toxicokinetics |
Hepatotoxicity
In the prelicensure clinical trials of capmatinib in patients with solid tumors harboring MET mutations, liver test abnormalities were frequent although usually self-limited and mild. Some degree of ALT elevations arose in 39% of capmatinib treated patients and were above 5 times the upper limit of normal (ULN) in 7%. In these trials that enrolled 373 patients, capmatinib was discontinued early due to increased AST or ALT in only 1% of patients. The liver test abnormalities had a median onset of 2 months after initiation of therapy. While serum aminotransferase elevations were occasionally quite high (5 to 20 times upper limit of normal), there were no accompanying elevations in serum bilirubin and no patient developed clinically apparent liver injury with jaundice. The product label for capmatinib recommends monitoring for routine liver tests before, at 2 week intervals during the first 3 months of therapy, and monthly thereafter as clinically indicated. Likelihood score: E* (unproven but suspected rare cause of clinically apparent liver injury). Effects During Pregnancy and Lactation ◉ Summary of Use during Lactation No information is available on the clinical use of capmatinib during breastfeeding. Because capmatinib is 96% bound to plasma proteins, the amount in milk is likely to be low. The manufacturer recommends that breastfeeding be discontinued during capmatinib therapy and for 1 week after the last dose. ◉ Effects in Breastfed Infants Relevant published information was not found as of the revision date. ◉ Effects on Lactation and Breastmilk Relevant published information was not found as of the revision date. Protein Binding Plasma protein binding is approximately 96% and is independent of drug serum concentration. |
|
References | ||
Additional Infomation |
Pharmacodynamics
Capmatinib inhibits the overactivity of c-Met, a receptor tyrosine kinase encoded by the _MET_ proto-oncogene. Mutations in _MET_ are involved in the proliferation of many cancers, including non-small cell lung cancer (NSCLC). Capmatinib may cause photosensitivity reactions in patients following ultraviolet (UV) exposure - patients undergoing therapy with capmatinib should be advised to use sunscreen and protective clothing to limit exposure to UV radiation. Instances of interstitial lung disease/pneumonitis, which can be fatal, occurred in patients being treated with capmatinib. Patients presenting with signs or symptoms of lung disease (e.g. cough, dyspnea, fever) should have capmatinib immediately withheld, and capmatinib should be permanently discontinued if no other feasible causes of the lung-related symptoms are identified. |
Molecular Formula |
C23H17FN6O
|
|
---|---|---|
Molecular Weight |
412.42
|
|
Exact Mass |
412.144
|
|
Elemental Analysis |
C, 66.98; H, 4.15; F, 4.61; N, 20.38; O, 3.88
|
|
CAS # |
1029712-80-8
|
|
Related CAS # |
Capmatinib dihydrochloride hydrate;1865733-40-9;Capmatinib dihydrochloride;1197376-85-4;Capmatinib hydrochloride;1029714-89-3
|
|
PubChem CID |
25145656
|
|
Appearance |
Yellow solid powder
|
|
Density |
1.4±0.1 g/cm3
|
|
Index of Refraction |
1.717
|
|
LogP |
-0.12
|
|
Hydrogen Bond Donor Count |
1
|
|
Hydrogen Bond Acceptor Count |
6
|
|
Rotatable Bond Count |
4
|
|
Heavy Atom Count |
31
|
|
Complexity |
637
|
|
Defined Atom Stereocenter Count |
0
|
|
SMILES |
FC1=C(C(N([H])C([H])([H])[H])=O)C([H])=C([H])C(=C1[H])C1C([H])=NC2=NC([H])=C(C([H])([H])C3C([H])=C([H])C4=C(C([H])=C([H])C([H])=N4)C=3[H])N2N=1
|
|
InChi Key |
LIOLIMKSCNQPLV-UHFFFAOYSA-N
|
|
InChi Code |
InChI=1S/C23H17FN6O/c1-25-22(31)18-6-5-16(11-19(18)24)21-13-28-23-27-12-17(30(23)29-21)10-14-4-7-20-15(9-14)3-2-8-26-20/h2-9,11-13H,10H2,1H3,(H,25,31)
|
|
Chemical Name |
2-fluoro-N-methyl-4-[7-(quinolin-6-ylmethyl)imidazo[1,2-b][1,2,4]triazin-2-yl]benzamide
|
|
Synonyms |
|
|
HS Tariff Code |
2934.99.9001
|
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
|
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
|
|||
---|---|---|---|---|
Solubility (In Vivo) |
Solubility in Formulation 1: ≥ 2.08 mg/mL (5.04 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL. Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution. Solubility in Formulation 2: ≥ 2.08 mg/mL (5.04 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution. For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly. Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution. View More
Solubility in Formulation 3: 5%DMSO+40%PEG300+5%Tween80+50%ddH2O: 6mg/ml |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 2.4247 mL | 12.1236 mL | 24.2471 mL | |
5 mM | 0.4849 mL | 2.4247 mL | 4.8494 mL | |
10 mM | 0.2425 mL | 1.2124 mL | 2.4247 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.
A Study of Amivantamab and Capmatinib Combination Therapy in Unresectable Metastatic Non-small Cell Lung Cancer
CTID: NCT05488314
Phase: Phase 1/Phase 2   Status: Active, not recruiting
Date: 2024-10-24
INCB28060 inhibits c-MET–dependent cell proliferation and survival. Clin Cancer Res. 2011 Nov 15;17(22):7127-38. td> |
HGF induces production of TGF-α, AR, and HRG-β1 in cancer cells and INCB28060 effectively blocks the induction. td> |
Cross-talk between c-MET and EGFR or HER-3 in cancer cells. td> |