Size | Price | Stock | Qty |
---|---|---|---|
5mg |
|
||
10mg |
|
||
25mg |
|
||
50mg |
|
||
100mg |
|
||
250mg |
|
||
500mg |
|
||
1g |
|
||
Other Sizes |
|
Purity: ≥98%
Capmatinib 2HCl (INCB28060; INC-280; Tabrecta), the dihydrochloride salt of Capmatinib, is an orally bioavailable and ATP-competitive inhibitor of c-MET approved by FDA on August 10, 2022 by the US FDA for adult patients with metastatic non-small cell lung cancer (NSCLC) whose tumors have a mutation leading to mesenchymal-epithelial transition (MET) exon 14 skipping, as detected by an FDA-approved test. In a cell-free assay, it inhibits c-MET with an IC50 of 0.13 nM, but it is inactive against EGFR, HER-3, and RONβ. The treatment of adults with metastatic non-small cell lung cancer with capmatinib has received approval. By binding to c-Met specifically, the c-Met inhibitor INC280 prevents c-Met phosphorylation and obstructs c-Met signal transduction pathways. When c-Met protein is overexpressed or constitutively activated in tumor cells, this can lead to cell death. According to the GEOMETRY mono-1 trial (NCT02414139), a multicenter, non-randomized, open-label, multi-cohort study, capmatinib was previously given accelerated approval for the same indication on May 6, 2020, based on the initial overall response rate and duration of response. An extra 63 patients' data and 22 months of follow-up to evaluate response durability and confirm clinical benefit were used to determine the conversion to regular approval.
Targets |
c-MET (IC50 = 0.13 nM)
|
|
---|---|---|
ln Vitro |
|
|
ln Vivo |
|
|
Enzyme Assay |
The assay buffer has the following contents: pH 7.8, 50 mM Tris-HCl, 10 mM MgCl2, 100 mM NaCl, 0.1 mg/ml BSA, and 5 mM DTT. Spotted on 384-well plates for HTS are 0.8 μL of 5 mM INCB28060 dissolved in DMSO. According to DMSO titration, a solvent concentration of 4% is the highest that can be tolerated. The INCB28060 plate is prepared by serial dilutions at three and eleven points in order to measure IC50s. The assay plate is transferred with 0.8 μL of INCB28060 in DMSO from the INCB28060 plate. DMSO has a final concentration of 2%. In assay buffer, solutions of 0.5 nM phosphorylated c-Met or 8 nM unphosphorylated c-Met are made. In an assay buffer containing 400 μM ATP (unphosphorylated c-Met) or 160 uM ATP (phosphorylated c-Met), a 1 mM stock solution of the peptide substrate Biotin-EQEDEPEGDYFEWLE-amide dissolved in DMSO is diluted to 1 μM. To start the reaction, add 20 μL of substrate solution per well after adding a 20 μL volume of enzyme solution (or assay buffer for the enzyme blank) to the corresponding wells in each plate. For ninety minutes, the plate is incubated at 25 °C with protection from light. To terminate the reaction, introduce 20 μL of a mixture comprising 45 mM EDTA, 50 mM Tris-HCl, 50 mM NaCl, 0.4 mg/ml BSA, 200 nM SA-APC, and 3 nM EUPy20. After incubating the plate at room temperature for 15-30 minutes, the Perkin Elmer Fusion α-FP instrument measures the homogenous time resolved fluorescence (HTRF). The following HTRF program settings are in use: 330/30 primary excitation filter 200 uSec for the primary window, 50 uSec for the primary delay, and 15 flashes total. Time to read well: 2000
|
|
Cell Assay |
In RPMI-1640 medium with 10% FBS, H441 cells are seeded and grown to full confluence. Using a P200 pipette tip, cells are scraped to create gaps. Next, in the presence of varied INCB28060 concentrations, cells are stimulated with 50 ng/mL recombinant human HGF to induce migration across the gap. Following an overnight incubation period, a semiqualitative evaluation of the inhibition of cell migration is carried out and representative photos are taken.
Cell viability assay[1] Optimal cell density used in the viability assay was predetermined for individual cell lines. To determine compound potency, cells were seeded into 96-well microplates at the appropriate density in media containing 1% to 2% FBS and supplemented with serial dilutions of INCB28060 in a final volume of 100 μL per well. After 72-hour incubation, 24 μL of CellTiter 96 AQueous One Solution was added to each well, and the plates were incubated for 2 hours in a 37°C incubator. The optical density was measured in the linear range using a microplate reader at 490 nm with wavelength correction at 650 nm. IC50 values were calculated using the GraphPad Prism Software. Soft agar colony formation assay[1] U-87MG or H441 cells were prepared at adequate densities in 6-well plates mixed with 0.5 mL top layer agar containing 0.3% agarose in appropriate culture medium and supplemented with 1% or 10% FBS, in the presence or absence of 50 ng/mL recombinant human HGF and INCB28060 at various concentrations. Cells were evenly laid over 1 mL solidified base layer agar containing 0.6% agarose in culture medium. The plates were incubated at 37°C in a humidified incubator supplied with 5% CO2. Cells were fed once a week with top agar containing appropriate concentrations of human HGF and INCB28060. The number and size of colonies were evaluated 2 to 3 weeks later when representative photographs were taken. Cell migration assay[1] H441 cells were seeded in RPMI-1640 medium containing 10% FBS and grown to complete confluence. Gaps were introduced by scraping cells with a P200 pipette tip. Cells were then stimulated with 50 ng/mL recombinant human HGF to induce migration across the gap in the presence of various concentrations of INCB28060. After an overnight incubation, representative photographs were taken and a semiqualitative assessment of inhibition of cell migration was conducted. Apoptosis assay[1] Cells were seeded in a 96-well plate and grown overnight in culture medium containing 0.5% FBS. Cells were then treated with INCB28060 at various concentrations for 24 hours. Apoptosis was measured using a DNA fragmentation–based Cell Death Detection ELISAplus kit according to the manufacturer's instructions. To measure PARP cleavage, cells were grown in 10 cm dishes and treated similarly with INCB28060 as described above. Protein extracts were then prepared and subjected to Western blot analysis using a rabbit anti-cleaved PARP (Asp214) antibody. |
|
Animal Protocol |
Eight-week-old female Balb/c nu/nu mice (Charles River) are inoculated subcutaneously with 4 × 106 tumor cells (S114 model) or with 5 × 106 tumor cells (U-87MG glioblastoma model).
3, 10, 30 mg/kg INCB28060 is orally dosed, twice each day. Efficacy studies[1] Tumor-bearing mice were dosed orally, twice each day with 1, 3, 10, or 30 mg/kg of free base INCB28060 reconstituted in 5% DMAC in 0.5% methylcellulose for up to 2 weeks. Body weights were monitored throughout the study as a gross measure of toxicity/morbidity. Tumor growth inhibition, expressed in percent, was calculated using the formula: (1 − [(volume (treated)/volume (vehicle)]) × 100. Pharmacodynamic analysis[1] For pharmacodynamic analysis, S114 tumor–bearing mice were monitored for tumor growth and then randomized into groups of 3 with average tumor sizes of approximately 300 to 500 mm3. For time course studies, mice were given a single oral dose of 3 mg/kg INCB28060 reconstituted in 5% DMAC in 0.5% methylcellulose and tumors were harvested at the indicated time points. For dose escalation studies, mice were given a single oral dose of INCB28060 at 0.03, 0.1, 0.3, 1, 3, or 10 mg/kg reconstituted in 5% DMAC in 0.5% methylcellulose and tumors were harvested 30 minutes after dosing. All tumors were processed for the determination of phospho-c-Met levels using the Human Phospho-HGFR/c-Met kit. The plasma concentration of INCB28060 was determined by LC/MS/MS analysis following retro-orbital or cardiac puncture blood collection. |
|
ADME/Pharmacokinetics |
Absorption
The oral bioavailability of capmatinib is estimated to be >70%. Following oral administration, maximum plasma concentrations are achieved within 1 to 2 hours (Tmax). Co-administration with a high-fat meal increased capmatinib AUC by 46% with no change in Cmax (as compared to fasted conditions), and co-administration with a low-fat meal had no clinically meaningful effects on exposure. Route of Elimination Following oral administration of radiolabeled capmatinib, approximately 78% of the radioactivity is recovered in feces, of which ~42% is unchanged parent drug, and 22% is recovered in the urine, of which a negligible amount remains unchanged parent drug. Volume of Distribution The apparent volume of distribution at steady-state is 164 L. Clearance The mean apparent clearance of capmatinib at steady-state is 24 L/h. Metabolism / Metabolites Capmatinib undergoes metabolism primarily via CYP3A4 and aldehyde oxidase. Specific biotransformation pathways and metabolic products have yet to be elucidated. Biological Half-Life The elimination half-life is 6.5 hours. |
|
Toxicity/Toxicokinetics |
Hepatotoxicity
In the prelicensure clinical trials of capmatinib in patients with solid tumors harboring MET mutations, liver test abnormalities were frequent although usually self-limited and mild. Some degree of ALT elevations arose in 39% of capmatinib treated patients and were above 5 times the upper limit of normal (ULN) in 7%. In these trials that enrolled 373 patients, capmatinib was discontinued early due to increased AST or ALT in only 1% of patients. The liver test abnormalities had a median onset of 2 months after initiation of therapy. While serum aminotransferase elevations were occasionally quite high (5 to 20 times upper limit of normal), there were no accompanying elevations in serum bilirubin and no patient developed clinically apparent liver injury with jaundice. The product label for capmatinib recommends monitoring for routine liver tests before, at 2 week intervals during the first 3 months of therapy, and monthly thereafter as clinically indicated. Likelihood score: E* (unproven but suspected rare cause of clinically apparent liver injury). Effects During Pregnancy and Lactation ◉ Summary of Use during Lactation No information is available on the clinical use of capmatinib during breastfeeding. Because capmatinib is 96% bound to plasma proteins, the amount in milk is likely to be low. The manufacturer recommends that breastfeeding be discontinued during capmatinib therapy and for 1 week after the last dose. ◉ Effects in Breastfed Infants Relevant published information was not found as of the revision date. ◉ Effects on Lactation and Breastmilk Relevant published information was not found as of the revision date. |
|
References | ||
Additional Infomation |
Capmatinib is a small molecule kinase inhibitor targeted against c-Met (a.k.a. hepatocyte growth factor receptor [HGFR]), a receptor tyrosine kinase that, in healthy humans, activates signaling cascades involved in organ regeneration and tissue repair. Aberrant c-Met activation - via mutations, amplification, and/or overexpression - is known to occur in many types of cancer, and leads to overactivation of multiple downstream signaling pathways such as STAT3, PI3K/ATK, and RAS/MAPK. Mutations in MET have been detected in non-small cell lung cancer (NSCLC), and the prevalence of MET amplification in epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI)-naive patients with NSCLC has been reported to be 1.4% - 21%. This co-occurrence has made c-Met a desirable target in the treatment of NSCLC. Manufactured by Novartis and marketed under the brand name Tabrecta, capmatinib was granted accelerated approval by the FDA on May 6, 2020, for the treatment of NSCLC in patients whose tumors have a mutation that leads to mesenchymal-epithelial transition (MET) exon 14 skipping. The presence of the mutation must be confirmed by an FDA-approved test, such as the FoundationOne CDx assay (manufactured by Foundation Medicine, Inc.), which was approved by the FDA on the same day. As this indication was granted under an accelerated approval, its continued approval is contingent upon verification of capmatinib's benefit in confirmatory trials. Capmatinib was approved by Health Canada on June 8, 2022.
Capmatinib is a Kinase Inhibitor. The mechanism of action of capmatinib is as a Mesenchymal Epithelial Transition Inhibitor, and Cytochrome P450 1A2 Inhibitor, and P-Glycoprotein Inhibitor, and Breast Cancer Resistance Protein Inhibitor, and Multidrug and Toxin Extrusion Transporter 1 Inhibitor, and Multidrug and Toxin Extrusion Transporter 2 K Inhibitor. Capmatinib is an orally available, small molecule inhibitor of the mesenchymal-epithelial transition (MET) factor tyrosine kinase receptor that is used is selected patients with non-small cell lung cancer (NSCLC). Serum aminotransferase elevations are common during therapy with capmatinib, but it has not been linked to instances of clinically apparent liver injury with jaundice. Drug Indication In the US, capmatinib is indicated for the treatment of adult patients with metastatic non-small cell lung cancer (NSCLC) whose tumors have a mutation that leads to mesenchymal-epithelial transition (MET) exon 14 skipping as detected by an FDA-approved test. Capmatinib is approved to treat adults with locally advanced unresectable or metastatic non-small cell lung cancer (NSCLC) with MET exon 14 skipping alterations in Canada. View MoreTabrecta as monotherapy is indicated for the treatment of adult patients with advanced non small cell lung cancer (NSCLC) harbouring alterations leading to mesenchymal epithelial transition factor gene exon 14 (METex14) skipping, who require systemic therapy following prior treatment with immunotherapy and/or platinum based chemotherapy. Pharmacodynamics Capmatinib inhibits the overactivity of c-Met, a receptor tyrosine kinase encoded by the _MET_ proto-oncogene. Mutations in _MET_ are involved in the proliferation of many cancers, including non-small cell lung cancer (NSCLC). Capmatinib may cause photosensitivity reactions in patients following ultraviolet (UV) exposure - patients undergoing therapy with capmatinib should be advised to use sunscreen and protective clothing to limit exposure to UV radiation. Instances of interstitial lung disease/pneumonitis, which can be fatal, occurred in patients being treated with capmatinib. Patients presenting with signs or symptoms of lung disease (e.g. cough, dyspnea, fever) should have capmatinib immediately withheld, and capmatinib should be permanently discontinued if no other feasible causes of the lung-related symptoms are identified. Mechanism of Action Aberrant activation of c-Met has been documented in many cancers, including non-small cell lung cancer (NSCLC). Mutations that result in the skipping of _MET_ exon 14 lead to the formation of a mutant c-Met with a missing regulatory domain - these mutant proteins have a reduced ability to negatively regulate, leading to a pathological increase in their downstream activity. Capmatinib inhibits the phosphorylation of both wild-type and mutant variants of c-Met triggered by the binding of its endogenous ligand, hepatocyte growth factor - in doing so, it prevents c-Met-mediated phosphorylation of downstream signaling proteins, as well as the proliferation and survival of c-Met-dependent tumor cells. Purpose: The c-MET receptor tyrosine kinase plays important roles in the formation, progression, and dissemination of human cancer and presents an attractive therapeutic target. This study describes the preclinical characterization of INCB28060, a novel inhibitor of c-MET kinase. Experimental design: Studies were conducted using a series of in vitro and in vivo biochemical and biological experiments. Results: INCB28060 exhibits picomolar enzymatic potency and is highly specific for c-MET with more than 10,000-fold selectivity over a large panel of human kinases. This inhibitor potently blocks c-MET phosphorylation and activation of its key downstream effectors in c-MET-dependent tumor cell lines. As a result, INCB28060 potently inhibits c-MET-dependent tumor cell proliferation and migration and effectively induces apoptosis in vitro. Oral dosing of INCB28060 results in time- and dose-dependent inhibition of c-MET phosphorylation and tumor growth in c-MET-driven mouse tumor models, and the inhibitor is well tolerated at doses that achieve complete tumor inhibition. In a further exploration of potential interactions between c-MET and other signaling pathways, we found that activated c-MET positively regulates the activity of epidermal growth factor receptors (EGFR) and HER-3, as well as expression of their ligands. These effects are reversed with INCB28060 treatment. Finally, we confirmed that circulating hepatocyte growth factor levels are significantly elevated in patients with various cancers. Conclusions: Activated c-MET has pleiotropic effects on multiple cancer-promoting signaling pathways and may play a critical role in driving tumor cell growth and survival. INCB28060 is a potent and selective c-MET kinase inhibitor that may have therapeutic potential in cancer treatment.[1] Objective: Gastric cancer is more open related to genetic predisposition. In our RNA sequencing study on gastric cancer patients, Runt-related transcription factor-3 (RUNX3) expression was significantly down-regulated in gastric cancer. We showed that decreased levels of RUNX3 are significantly associated with c-MET (r = - 0.4216, P = 0.0130). In addition, c-MET expression is a candidate for targeted therapy in gastric cancer. Therefore, in the present study, the anti-cancer effects of the c-MET inhibitor on gastric cancer cells from positive or negative for c-MET amplification were evaluated. Results: INC280 treatment inhibits growth of a c-MET-amplified MKN45 (RUNX3-positive) and SNU620 (RUNX3-negative) diffuse type cells. Then, INC280 showed the highest inhibition and apoptotic rates with the lowest IC50s in MKN45 cells but not in c-MET-reduced MKN28 (intestinal type) cells. We also showed that INC280 inhibits the WNT signaling pathway and SNAIL expression in MKN45 cells. The data indicate that INC280 could be used as therapeutic agents for the prevention or treatment of diffuse gastric cancer positive for c-MET amplification.[2] |
Molecular Formula |
C23H19CL2FN6O
|
---|---|
Molecular Weight |
485.34
|
Exact Mass |
484.098
|
Elemental Analysis |
C, 66.98; H, 4.15; F, 4.61; N, 20.38; O, 3.88
|
CAS # |
1197376-85-4
|
Related CAS # |
Capmatinib;1029712-80-8;Capmatinib dihydrochloride hydrate;1865733-40-9;Capmatinib hydrochloride;1029714-89-3; 1197376-85-4 (2HCl); 1197376-90-1 (besylate); 1450883-33-6 (fumarate)
|
PubChem CID |
44513225
|
Appearance |
Solid
|
Hydrogen Bond Donor Count |
3
|
Hydrogen Bond Acceptor Count |
6
|
Rotatable Bond Count |
4
|
Heavy Atom Count |
33
|
Complexity |
637
|
Defined Atom Stereocenter Count |
0
|
SMILES |
Cl.Cl.FC1=C(C(NC)=O)C=CC(=C1)C1C=NC2=NC=C(CC3C=CC4C(=CC=CN=4)C=3)N2N=1
|
InChi Key |
ZTNPHABKLIJXTL-UHFFFAOYSA-N
|
InChi Code |
InChI=1S/C23H17FN6O.2ClH/c1-25-22(31)18-6-5-16(11-19(18)24)21-13-28-23-27-12-17(30(23)29-21)10-14-4-7-20-15(9-14)3-2-8-26-20;;/h2-9,11-13H,10H2,1H3,(H,25,31);2*1H
|
Chemical Name |
2-fluoro-N-methyl-4-[7-(quinolin-6-ylmethyl)imidazo[1,2-b][1,2,4]triazin-2-yl]benzamide;dihydrochloride
|
Synonyms |
INCB28060; 2HClINC-280; 2HClCapmatinib; 2HClINCB28060; 2HClINC-280; 2HClNVP; Capmatinib dihydrochloride; 1197376-85-4; Capmatinib (dihydrochloride); Z0V2EW20JR; Benzamide, 2-fluoro-N-methyl-4-[7-(6-quinolinylmethyl)imidazo[1,2-b][1,2,4]triazin-2-yl]-, hydrochloride (1:2); 2-fluoro-N-methyl-4-[7-(quinolin-6-ylmethyl)imidazo[1,2-b][1,2,4]triazin-2-yl]benzamide;dihydrochloride; 2-fluoro-n-methyl-4-(7-(quinolin-6-ylmethyl)imidazo[1,2-b][1,2,4]triazin-2-yl)benzamide dihydrochloride; Capmatinib 2HCl; INC280; 2HClNVP; INC-2802HCl
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
DMSO: > 10 mM
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 2.0604 mL | 10.3021 mL | 20.6041 mL | |
5 mM | 0.4121 mL | 2.0604 mL | 4.1208 mL | |
10 mM | 0.2060 mL | 1.0302 mL | 2.0604 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.
NCT Number | Recruitment | interventions | Conditions | Sponsor/Collaborators | Start Date | Phases |
NCT04427072 | Active Recruiting |
Drug: Capmatinib Drug: Docetaxel |
Carcinoma, Non-Small-Cell Lung | Novartis Pharmaceuticals | September 25, 2020 | Phase 3 |
NCT04926831 | Active Recruiting |
Drug: capmatinib | Non-small Cell Lung Cancer | Novartis Pharmaceuticals | August 10, 2022 | Phase 2 |
NCT02414139 | Active Recruiting |
Drug: INC280 (capmatinib) |
Carcinoma, Non-Small-Cell Lung | Novartis Pharmaceuticals | June 11, 2015 | Phase 2 |
NCT03333343 | Active Recruiting |
Drug: INC280 Drug: gefitinib |
EGFR-mutant Non-small Cell Lung Cancer |
Novartis Pharmaceuticals | January 29, 2018 | Phase 1 |
NCT05703516 | Recruiting | Other: Capmatinib | Non-Small-Cell Lung Carcinoma | Novartis Pharmaceuticals | June 12, 2023 |
INCB28060 inhibits c-MET–dependent cell proliferation and survival. Clin Cancer Res. 2011 Nov 15;17(22):7127-38. td> |
HGF induces production of TGF-α, AR, and HRG-β1 in cancer cells and INCB28060 effectively blocks the induction. td> |
Cross-talk between c-MET and EGFR or HER-3 in cancer cells. td> |