yingweiwo

Capreomycin

Alias: HSDB-3211; HSDB3211; HSDB 3211
Cat No.:V41700 Purity: ≥98%
Capreomycin is a macrocyclic peptide antibiotic.
Capreomycin
Capreomycin Chemical Structure CAS No.: 11003-38-6
Product category: New3
This product is for research use only, not for human use. We do not sell to patients.
Size Price
100mg
250mg
500mg

Other Forms of Capreomycin:

  • Capreomycin Sulfate
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
Capreomycin is a macrocyclic peptide antibiotic. Capreomycin may be utilized in research against multidrug-resistant Mycobacterium tuberculosis (TB). Capreomycin inhibits phenylalanine synthesis in mycobacterial ribosomal translation.
Biological Activity I Assay Protocols (From Reference)
Targets
Aminoglycoside
ln Vitro
The cyclic peptide antibiotics capreomycin and viomycin are generally effective against the bacterial pathogen Mycobacterium tuberculosis. However, recent virulent isolates have become resistant by inactivation of their tlyA gene. We show here that tlyA encodes a 2'-O-methyltransferase that modifies nucleotide C1409 in helix 44 of 16S rRNA and nucleotide C1920 in helix 69 of 23S rRNA. Loss of these previously unidentified rRNA methylations confers resistance to capreomycin and viomycin. Many bacterial genera including enterobacteria lack a tlyA gene and the ensuing methylations and are less susceptible than mycobacteria to capreomycin and viomycin. We show that expression of recombinant tlyA in Escherichia coli markedly increases susceptibility to these drugs. When the ribosomal subunits associate during translation, the two tlyA-encoded methylations are brought into close proximity at interbridge B2a. The location of these methylations indicates the binding site and inhibitory mechanism of capreomycin and viomycin at the ribosome subunit interface[3].
ln Vivo
Capreomycin (1.4, 7.2 and 14.5 mg/kg inhaled; 20 mg/kg IM; 4 weeks) lowers wet lung weight and reduces bacterial load in sick guinea pig lungs [2].
Enzyme Assay
M. tuberculosis wild-type Beijing D3 and rrl mutant C-401 were inoculated in triplicate into 7H9 media without drug and 7H9 media containing 10 μg/ml capreomycin and were grown at 37°C for 21 days. Growth of the cultures was monitored daily at OD600. The MICs of antibiotics were determined for each strain as previously described (Maus et al., 2005a, Maus et al., 2005b).[3] Overnight cultures of E. coli cells were diluted 105-fold and plated onto Lauria-Bertani agar (Sambrook et al., 1989) containing viomycin, capreomycin, kanamycin, or rifampicin with concentrations increasing in 2-fold steps. The agar plates were incubated at 37°C, and MICs were scored as the lowest concentration at which no growth was observed.[3]
Animal Protocol
Animal/Disease Models: Male guinea pig [836±162.3g; 2 × 105 CFU/mL Mycobacterium tuberculosis (strain H37Rv) via respiratory nebulization suspension][2]
Doses: Inhalation 1.4, 7.2 and 14.5 mg/kg; 20 mg /kg for intramuscular
Route of Administration: inhalation or intramuscularinjection; 4-week
Experimental Results: At the dose of 14.5 mg/kg, the lung wet weight was Dramatically diminished, which was less than that of the 1.4 mg/kg group and the control group. The bacterial load in the lungs was Dramatically diminished at 14.5 mg/kg (3.52 ± 0.20 CFU/mL) compared with the control (4.58 ± 0.20 CFU/mL) and 1.4 and 7.2 mg/kg (4.02 ± 0.32 and 4.01 ± 0.29); P < 0.05) CFU/mL) respectively.
References
[1]. Maus CE, et al. Mutation of tlyA confers capreomycin resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2005 Feb;49(2):571-7.
[2]. Garcia-Contreras L, et al. Inhaled large porous particles of capreomycin for treatment of tuberculosis in a guinea pig model. Antimicrob Agents Chemother. 2007 Aug;51(8):2830-6.
[3]. Capreomycin binds across the ribosomal subunit interface using tlyA-encoded 2'-O-methylations in 16S and 23S rRNAs. Mol Cell. 2006 Jul 21;23(2):173-82.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C50H88N28O15
Molecular Weight
1321.412
Exact Mass
766.31402
Elemental Analysis
C, 45.45; H, 6.71; N, 29.68; O, 18.16
CAS #
11003-38-6
Related CAS #
Capreomycin sulfate;1405-37-4
PubChem CID
484211591
Appearance
Typically exists as solids (or liquids in special cases) at room temperature
Boiling Point
1376.7ºC at 760 mmHg
Flash Point
786.4ºC
Vapour Pressure
0mmHg at 25°C
tPSA
480.83
SMILES
O=C1[C@]([H])([C@@]2([H])CCN=C(N)N2)NC(/C(=C\NC(N)=O)/NC([C@H](CNC(C[C@H](CCCN)N)=O)NC([C@H](CO)NC([C@H](CN1)N)=O)=O)=O)=O.O=C1[C@]([H])([C@@]2([H])CCN=C(N)N2)NC(/C(=C\NC(N)=O)/NC([C@H](CNC(C[C@H](CCCN)N)=O)NC([C@H](C)NC([C@H](CN1)N)=O)=O)=O)=O
InChi Key
VCOPTHOUUNAYKQ-WBTCAYNUSA-N
InChi Code
InChI=1S/C25H44N14O8.C25H44N14O7/c26-4-1-2-11(27)6-17(41)32-8-14-20(43)35-15(9-34-25(30)47)21(44)39-18(13-3-5-31-24(29)38-13)23(46)33-7-12(28)19(42)37-16(10-40)22(45)36-14;1-11-19(41)36-15(9-32-17(40)7-12(27)3-2-5-26)21(43)37-16(10-34-25(30)46)22(44)39-18(14-4-6-31-24(29)38-14)23(45)33-8-13(28)20(42)35-11/h9,11-14,16,18,40H,1-8,10,26-28H2,(H,32,41)(H,33,46)(H,35,43)(H,36,45)(H,37,42)(H,39,44)(H3,29,31,38)(H3,30,34,47);10-15,18H,2-9,26-28H2,1H3,(H,32,40)(H,33,45)(H,35,42)(H,36,41)(H,37,43)(H,39,44)(H3,29,31,38)(H3,30,34,46)/b15-9+;16-10+/t11-,12-,13+,14-,16-,18-;11-,12-,13-,14+,15-,18-/m00/s1 SMILES Code: C[C@@H]1NC([C@H](CNC([C@H]([C@H]2CCN=C(N2)N)NC(/C(NC([C@@H](NC1=O)CNC(C[C@H](CCCN)N)=O)=O)=C\NC(N)=O)=O)=O)N)=O.NCCC[C@@H](CC(NC[C@@H]3NC([C@@H](NC([C@H](CNC([C@H]([C@H]4CCN=C(N4)N)NC(/C(NC3=O)=C\NC(N)=O)=O)=O)N)=O)CO)=O)=O)N
Chemical Name
(S)-3,6-diamino-N-(((2S,5S,11S,15S,E)-15-amino-11-((R)-2-amino-3,4,5,6-tetrahydropyrimidin-4-yl)-2-(hydroxymethyl)-3,6,9,12,16-pentaoxo-8-(ureidomethylene)-1,4,7,10,13-pentaazacyclohexadecan-5-yl)methyl)hexanamide compound with (S)-3,6-diamino-N-(((2S,5S,11S,15S,E)-15-amino-11-((R)-2-amino-3,4,5,6-tetrahydropyrimidin-4-yl)-2-methyl-3,6,9,12,16-pentaoxo-8-(ureidomethylene)-1,4,7,10,13-pentaazacyclohexadecan-5-yl)methyl)hexanamide (1:1)
Synonyms
HSDB-3211; HSDB3211; HSDB 3211
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 0.7568 mL 3.7838 mL 7.5677 mL
5 mM 0.1514 mL 0.7568 mL 1.5135 mL
10 mM 0.0757 mL 0.3784 mL 0.7568 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us