Size | Price | |
---|---|---|
500mg | ||
1g | ||
Other Sizes |
ln Vitro |
It has been demonstrated that in individuals with hypertension, captopril hydrochloride (SQ 14225) offers comparable benefits in terms of morbidity and mortality to diuretics and beta-blockers. While enalapril and lisinopril can stop the formation of nephropathy in diabetic patients with normoalbuminuria, captopril hydrochloride has been demonstrated to slow the evolution of diabetic nephropathy [4]. Captopril hydrochloride exists in both cis and trans states in equimolar amounts in solution. The enzyme exclusively chooses inhibitors in their trans state that have substrate binding grooves that show structural and stereoelectronic complementarity [5].
|
---|---|
Enzyme Assay |
ACE Inhibition Assay[1]
The inhibition of ACE activity by various concentrations of EA and CP as well as their IC50 values were measured using a spectrophotometric method with HHL as substrate as described by Chang et al. with modification. Briefly, a 20 mM sodium borate buffer containing 0.3 M NaCl (pH 8.3) was used for the preparation of EA, CP, ACE, and substrate HHL solutions. The ACE-catalyzed reaction was performed for 30 min at 37 °C in test tubes of the following compositions: 100 μL of EA or CP, 100 μL of ACE solution (40 mU/mL), and 100 μL of HHL (15 mM) solutions (A1); 100 μL of EA or CP solution and 200 μL of borate buffer (A2); 100 μL of borate buffer, 100 μL of ACE solution, and 100 μL of HHL solution (A3); and 300 μL of borate buffer (A4). The enzymatic reaction was stopped by adding 3 mL of alkaline solution of OPA solution (pH 12.0). The absorbance of each reaction was measured at 390 nm using a Beckman DU-640, after incubation for 20 min at 25 °C. Inhibition of ACE by EA or CP was calculated using the following equation: inhibition (%) = [1 – (A1 – A2)/(A3 – A4)] × 100. The IC50 value of ACE activity was calculated by the equation IC50 = (50 – b)/m derived from a linear regression graph of ACE activation, where b is the intercept and m is the slope of the equation.
|
Animal Protocol |
The angiotensin converting enzyme (ACE) inhibitors are widely used in the management of essential hypertension, stable chronic heart failure, myocardial infarction (MI) and diabetic nephropathy. There is an increasing number of new agents to add to the nine ACE inhibitors (benazepril, cilazapril, delapril, fosinopril, lisinopril, pentopril, perindopril, quinapril and ramipril) reviewed in this journal in 1990. The pharmacokinetic properties of five newer ACE inhibitors (trandolapril, moexipril, spirapril, temocapril and imidapril) are reviewed in this update. All of these new agents are characterised by having a carboxyl functional groups and requiring hepatic activation to form pharmacologically active metabolites. They achieve peak plasma concentrations at similar times (t(max)) to those of established agents. Three of these agents (trandolapril, moexipril and imidapril) require dosage reductions in patients with renal impairment. Dosage reductions of moexipril and temocapril are recommended for elderly patients, and dosages of moexipril should be lower in patients who are hepatically impaired. Moexipril should be taken 1 hour before meals, whereas other ACE inhibitors can be taken without regard to meals. The pharmacokinetics of warfarin are not altered by concomitant administration with trandolapril or moexipril. Although imidapril and spirapril have no effect on digoxin pharmacokinetics, the area under the concentration-time curve of imidapril and the peak plasma concentration of the active metabolite imidaprilat are decreased when imidapril is given together with digoxin. Although six ACE inhibitors (captopril, enalapril, fosinopril, lisinopril, quinapril and ramipril) have been approved for use in heart failure by the US Food and Drug Administration, an overview of 32 clinical trials of ACE inhibitors in heart failure showed that no significant heterogeneity in mortality was found among enalapril, ramipril, quinapril, captopril, lisinopril, benazepril, perindopril and cilazapril. Initiation of therapy with captopril, ramipril, and trandolapril at least 3 days after an acute MI resulted in all-cause mortality risk reductions of 18 to 27%. Captopril has been shown to have similar morbidity and mortality benefits to those of diuretics and beta-blockers in hypertensive patients. Captopril has been shown to delay the progression of diabetic nephropathy, and enalapril and lisinopril prevent the development of nephropathy in normoalbuminuric patients with diabetes. ACE inhibitors are generally characterised by flat dose-response curves. Lisinopril is the only ACE inhibitor that exhibits a linear dose-response curve. Despite the fact that most ACE inhibitors are recommended for once-daily administration, only fosinopril, ramipril, and trandolapril have trough-to-peak effect ratios in excess of 50%[5].
|
References |
Molecular Formula |
C9H15NO3S.HCL
|
---|---|
Molecular Weight |
253.74624
|
Exact Mass |
253.054
|
CAS # |
198342-23-3
|
Related CAS # |
Captopril;62571-86-2
|
PubChem CID |
71352898
|
Appearance |
Typically exists as solid at room temperature
|
LogP |
1.367
|
Hydrogen Bond Donor Count |
3
|
Hydrogen Bond Acceptor Count |
4
|
Rotatable Bond Count |
3
|
Heavy Atom Count |
15
|
Complexity |
244
|
Defined Atom Stereocenter Count |
2
|
SMILES |
C[C@H](CS)C(=O)N1CCC[C@H]1C(=O)O.Cl
|
InChi Key |
FECNGFPXMFYVNI-HHQFNNIRSA-N
|
InChi Code |
InChI=1S/C9H15NO3S.ClH/c1-6(5-14)8(11)10-4-2-3-7(10)9(12)13;/h6-7,14H,2-5H2,1H3,(H,12,13);1H/t6-,7+;/m1./s1
|
Chemical Name |
(2S)-1-[(2S)-2-methyl-3-sulfanylpropanoyl]pyrrolidine-2-carboxylic acid;hydrochloride
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 3.9409 mL | 19.7044 mL | 39.4089 mL | |
5 mM | 0.7882 mL | 3.9409 mL | 7.8818 mL | |
10 mM | 0.3941 mL | 1.9704 mL | 3.9409 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.