yingweiwo

Carbenicillin Disodium

Alias: Carbenicillin Disodium; Carbenicillin sodium; Carbenicillin disodium salt; Carbecin; Sodium carbenicillin; Carbenicillin disodium salt; carbenicillin sodium; Geopen; Carbecin; Microcillin; Pyocianil;
Cat No.:V17540 Purity: ≥98%
Carbenicillin Disodium is a broad-spectrum,parenterally-administered, semisynthetic and bactericidal antibiotic belonging to the carboxypenicillin subgroup of the penicillins.
Carbenicillin Disodium
Carbenicillin Disodium Chemical Structure CAS No.: 4800-94-6
Product category: Bacterial
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
500mg
1g
2g
5g
10g
50g
200g
Other Sizes

Other Forms of Carbenicillin Disodium:

  • Carindacillin sodium (Carbenicillin indanyl sodium; CP-15464-2)
  • Carbenicillin
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description
Carbenicillin Disodium is a broad-spectrum, parenterally-administered, semisynthetic and bactericidal antibiotic belonging to the carboxypenicillin subgroup of the penicillins. It was discovered by scientists at Beecham and marketed as Pyopen. It has Gram-negative coverage which includes Pseudomonas aeruginosa but limited Gram-positive coverage. The carboxypenicillins are susceptible to degradation by beta-lactamase enzymes, although they are more resistant than ampicillin to degradation. Carbenicillin is also more stable at lower pH than ampicillin.
Biological Activity I Assay Protocols (From Reference)
Targets
β-lactam; bacterial cell wall synthesis
ln Vitro
Isolated microspore culture is a promising option to rapidly fix the product of meiotic recombination of F1 hybrids, in the process of varietal development. Clean culture and high embryogenesis rate are essential to commercial triticale and wheat microspore cultures. So, this study investigated (1) contaminants from isolated microspores cultures, (2) two antibiotics to control bacterial growth, and (3) the contribution of antibiotics to increased microspore-derived embryo-like structures (ELS), green and albino plants. Five species of bacteria were identified in contaminated cultures (Erwinia aphidicola, Pantoea agglomerans, Pseudomonas sp., Staphylococcus epidermis and Staphylococcus warneri) using fatty acid analysis and 16S ribosomal RNA sequences analysis, and yeast. Antibacterial susceptibility test using Cefotaxime and Vancomycin resulted in strong inhibition of 24 bacterial isolates, using Cefotaxime at 100 mg/l, but not Pseudomonas sp. Other antibiotic treatments inhibited bacterial growth at least partially. Microspore induction medium supplemented with the same antibiotics treatments resulted in successful microspore embryogenesis and green plant production. Antibiotic treatments were first tested in triticale and then validated in wheat cultivars AC Carberry and AC Andrew. Induction medium supplemented with Cefotaxime at 50 and 100 mg/l substantially increased the formation of ELS and green plants in triticale and wheat, respectively. Incidentally, it also affected the occurrence of albinism in all genotypes. Our results demonstrated dual purpose of Cefotaxime for isolated microspore culture, most importantly it increases cell growth and success of microspore cultures in triticale and wheat genotypes, but would also prevent accidental loss of cultures with most common bacterial contaminants[3].
ln Vivo
Carbenicillin (intramuscular injection every 8 hours for 72 hours; 100–400 mg/kg) Disodium dramatically lowers the mortality rate of Pseudomonas-infected neutropenic rats[1].
Cell Assay
The isolates were grown for 48–72 h at 27 °C on LB medium in individual Petri dishes that were supplemented with different antibiotics (Table 1) to evaluate colony sensitivity towards antibiotics. The following antibiotics treatments were applied into the antibiotic assay on isolates and in isolated microspores cultures of triticale and wheat genotypes: T1: Control (no antibiotic); T2: Vancomycin at 100 mg/l; T3: Vancomycin 500 mg/l; T4: Cefotaxime at 50 mg/l; T5: Cefotaxime 100 mg/l; T6: Vancomycin 100 mg/l and Cefotaxime 50 mg/l; and T7: Vancomycin 500 mg/l and Cefotaxime 100 mg/l. The isolates’ growth was noted as no inhibition (+++), weak inhibition (++), strong inhibition (+) and no growth (−) relative to control, where no antibiotic was applied[3].
Animal Protocol
Rats made neutropenic with cyclophosphamide were infected intraperitoneally with Pseudomonas aeruginosa. The challenge organism was killed synergistically in vitro by the combination of gentamicin and carbenicillin. Untreated neutropenic rats infected with 3 x 10(6)Pseudomonas died between days 2 and 7, and the overall mortality was 70%. Groups of infected neutropenic rats were treated intramuscularly with 1.5 or 6 mg of gentamicin per kg per dose, 100 or 400 mg of carbenicillin per kg per dose, or 1.5 mg of gentamicin and 100 mg of carbenicillin per kg per dose. Treatment was begun at 2 h postinfection and was continued every 8 h for about 72 h. Cultures of blood and peritoneal washings were performed in control and treated rats at 1, 4, 24, 48, and 72 h postinfection. Gentamicin at either dose level was ineffective in preventing death, but mortality was significantly reduced by high-dose carbenicillin and low-dose combination therapy. In addition, the latter regimens sterilized the peritoneal fluid and blood. Carbenicillin and gentamicin showed in vivo synergy in the treatment of neutropenic Pseudomonas-infected rats[1].
References

[1]. Synergistic activity of carbenicillin and gentamicin in experimental Pseudomonas bacteremia in neutropenic rats. Antimicrob Agents Chemother. 1976 Oct;10(4):646-51.

[2]. Carbenicillin and ticarcillin. Med Clin North Am. 1982 Jan;66(1):61-77.

[3]. Cefotaxime prevents microbial contamination and improves microspore embryogenesis in wheat and triticale. Plant Cell Rep . 2013 Oct;32(10):1637-46.
Additional Infomation
Carbenicillin disodium is an organic sodium salt. It contains a carbenicillin(2-).
Carbenicillin Disodium is the disodium salt form of carbenicillin, a broad-spectrum, semi-synthetic penicillin antibiotic with bactericidal and beta-lactamase resistant activity. Carbenicillin acylates the penicillin-sensitive transpeptidase C-terminal domain by opening the lactam ring. This inactivation prevents the cross-linkage of peptidoglycan strands, thereby inhibiting the third and last stage of bacterial cell wall synthesis. This leads to incomplete bacterial cell wall synthesis and eventually causes cell lysis.
Broad-spectrum semisynthetic penicillin derivative used parenterally. It is susceptible to gastric juice and penicillinase and may damage platelet function.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C17H16N2NA2O6S
Molecular Weight
422.3633
Exact Mass
422.052
Elemental Analysis
C, 48.34; H, 3.82; N, 6.63; Na, 10.89; O, 22.73; S, 7.59
CAS #
4800-94-6
Related CAS #
Carbenicillin;4697-36-3
PubChem CID
20933
Appearance
A White to light yellow crystalline solid
Boiling Point
737.8ºC at 760 mmHg
Flash Point
400ºC
Hydrogen Bond Donor Count
1
Hydrogen Bond Acceptor Count
7
Rotatable Bond Count
3
Heavy Atom Count
28
Complexity
634
Defined Atom Stereocenter Count
3
SMILES
S1C(C([H])([H])[H])(C([H])([H])[H])[C@]([H])(C(=O)[O-])N2C([C@]([H])([C@@]12[H])N([H])C(C([H])(C(=O)[O-])C1C([H])=C([H])C([H])=C([H])C=1[H])=O)=O.[Na+].[Na+]
InChi Key
RTYJTGSCYUUYAL-JNGYGHJSSA-L
InChi Code
InChI=1S/C17H18N2O6S.2Na/c1-17(2)11(16(24)25)19-13(21)10(14(19)26-17)18-12(20)9(15(22)23)8-6-4-3-5-7-8/h3-7,9-11,14H,1-2H3,(H,18,20)(H,22,23)(H,24,25)/q2*+1/p-2/t9-,10+,11-,14+/m0../s1
Chemical Name
4-Thia-1-azabicyclo(3.2.0)heptane-2-carboxylic acid, 6-((carboxyphenylacetyl)amino)-3,3-dimethyl-7-oxo, disodium salt, (6S-(2alpha,5alpha,6beta))-
Synonyms
Carbenicillin Disodium; Carbenicillin sodium; Carbenicillin disodium salt; Carbecin; Sodium carbenicillin; Carbenicillin disodium salt; carbenicillin sodium; Geopen; Carbecin; Microcillin; Pyocianil;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: (1). Please store this product in a sealed and protected environment (e.g. under nitrogen), avoid exposure to moisture and light.  (2). This product is not stable in solution, please use freshly prepared working solution for optimal results.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
H2O : ~125 mg/mL (~295.96 mM )
DMSO : ~62.5 mg/mL (~147.98 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.08 mg/mL (4.92 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.08 mg/mL (4.92 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.08 mg/mL (4.92 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


Solubility in Formulation 4: 10% DMSO+40% PEG300+5% Tween-80+45% Saline: ≥ 2.08 mg/mL (4.92 mM)

Solubility in Formulation 5: 100 mg/mL (236.76 mM) in PBS (add these co-solvents sequentially from left to right, and one by one), clear solution; with ultrasonication.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.3676 mL 11.8382 mL 23.6765 mL
5 mM 0.4735 mL 2.3676 mL 4.7353 mL
10 mM 0.2368 mL 1.1838 mL 2.3676 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us