yingweiwo

Carteolol

Cat No.:V44936 Purity: ≥98%
Carteolol is a non-selective β-adrenoceptor antagonist (β-adrenoceptor).
Carteolol
Carteolol Chemical Structure CAS No.: 51781-06-7
Product category: New3
This product is for research use only, not for human use. We do not sell to patients.
Size Price
500mg
1g
Other Sizes

Other Forms of Carteolol:

  • Carteolol HCl (OPC-1085 HCl)
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
Carteolol is a non-selective β-adrenoceptor antagonist (β-adrenoceptor). Carteolol causes apoptosis through caspase activation and mitochondria-dependent pathways. Carteolol may be used in glaucoma research.
Biological Activity I Assay Protocols (From Reference)
ln Vitro
Carteolol is cytotoxic and decreases cell viability in a dose- and time-dependent manner (0–2%; 0-28 hours; HCEC) [1]. In HCEC cells, carteolol (0.25%; 4–12 hours) causes necrotic protein expression and apoptosis [1].
Cell Assay
Cell Viability Assay[1]
Cell Types: HCEC
Tested Concentrations: 0.00390625-2%
Incubation Duration: 0, 2, 4, 8, 16, 20, 24 and 28 hrs (hours)
Experimental Results: Decrease in cell viability and time at doses above 0.0015625% related way.

Western Blot Analysis [1]
Cell Types: HCEC
Tested Concentrations: 0.25%
Incubation Duration: 4, 8 and 12 hrs (hours)
Experimental Results: The expression of anti-apoptotic proteins Bcl-2 and Bcl-xL was weakened, and the expression of pro-apoptotic protein Bax was enhanced Bad and Proapoptotic proteins Cyt.c and AIF released from mitochondria.

Cell cycle analysis [1]
Cell Types: HCEC
Tested Concentrations: 0.25%
Incubation Duration: 4, 8, 12 hrs (hours)
Experimental Results: The number of G1 phase of the cell cycle increased, and the number of S phase diminished.
ADME/Pharmacokinetics
Metabolism / Metabolites
Hepatic.
Toxicity/Toxicokinetics
Effects During Pregnancy and Lactation
◉ Summary of Use during Lactation
No data are available for the use of carteolol during breastfeeding. Because its excretion into breastmilk is probably extensive, other beta-adrenergic blocking drugs are preferred to oral carteolol while breastfeeding a neonate. Infants over 2 months of age have more mature kidney function and are less likely to be affected.
Ophthalmic use of carteolol by the mother should pose little risk to the breastfed infant, although some guidelines state that gel formulations are preferred over solutions. To substantially diminish the amount of drug that reaches the breastmilk after using eye drops, place pressure over the tear duct by the corner of the eye for 1 minute or more, then remove the excess solution with an absorbent tissue.
◉ Effects in Breastfed Infants
A study of mothers taking beta-blockers during nursing found a numerically, but not statistically significant increased number of adverse reactions in those taking any beta-blocker. Although the ages of infants were matched to control infants, the ages of the affected infants were not stated. None of the mothers were taking carteolol. Beta-adrenergic blocking drugs with similar breastmilk excretion characteristics have caused adverse effects in breastfed newborns.
◉ Effects on Lactation and Breastmilk
A study in 6 patients with hyperprolactinemia and galactorrhea found no changes in serum prolactin levels following beta-adrenergic blockade with propranolol. There are no reports on the effects of beta-blockade or carteolol use during normal lactation.
References
[1]. Su W, et, al. Dose- and Time-Dependent Cytotoxicity of Carteolol in Corneal Endothelial Cells and the Underlying Mechanisms. Front Pharmacol. 2020 Mar 6;11:202.
Additional Infomation
Carteolol is a quinolone and a secondary alcohol. It has a role as a beta-adrenergic antagonist, an antihypertensive agent, an antiglaucoma drug, an anti-arrhythmia drug and a sympatholytic agent. It is a conjugate base of a carteolol(1+).
A beta-adrenergic antagonist used as an anti-arrhythmia agent, an anti-angina agent, an antihypertensive agent, and an antiglaucoma agent.
Carteolol is a beta-Adrenergic Blocker. The mechanism of action of carteolol is as an Adrenergic beta-Antagonist.
Carteolol is a synthetic quinolinone derivative and nonselective beta-adrenoceptor blocking agent with anti-glaucoma activity. Upon topical administration to the eye, carteolol decreases aqueous humor production, thereby reducing intraocular pressure (IOP).
A beta-adrenergic antagonist used as an anti-arrhythmia agent, an anti-angina agent, an antihypertensive agent, and an antiglaucoma agent.
See also: Carteolol Hydrochloride (has salt form).
Drug Indication
For the treatment of intraocular hypertension and chronic open-angle glaucoma
Mechanism of Action
The primary mechanism of the ocular hypotensive action of carteolol in reducing intraocular pressure is most likely a decrease in aqueous humor production. This process is initiated by the non-selective beta1 and beta2 adrenergic receptor blockade.
Pharmacodynamics
Carteolol is a beta1 and beta2 (non-selective) adrenergic receptor-blocking agent that does not have significant intrinsic sympathomimetic, direct myocardial depressant, or local anesthetic (membrane-stabilizing) activity. Carteolol, when applied topically to the eye, has the action of reducing elevated, as well as normal, intraocular pressure, whether or not accompanied by glaucoma. Elevated intraocular pressure is a major risk factor in the pathogenesis of glaucomatous visual field loss and optic nerve damage. Carteolol reduces intraocular pressure with little or no effect on pupil size or accommodation in contrast to the miosis which cholinergic agents are known to produce.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C16H24N2O3
Molecular Weight
292.37336
Exact Mass
292.179
CAS #
51781-06-7
Related CAS #
Carteolol hydrochloride;51781-21-6
PubChem CID
2583
Appearance
Typically exists as solid at room temperature
Density
1.13 g/cm3
Boiling Point
518.6ºC at 760 mmHg
Flash Point
267.4ºC
Index of Refraction
1.5800 (estimate)
LogP
2.228
Hydrogen Bond Donor Count
3
Hydrogen Bond Acceptor Count
4
Rotatable Bond Count
6
Heavy Atom Count
21
Complexity
354
Defined Atom Stereocenter Count
0
SMILES
CC(C)(NCC(O)COC1=CC=CC2=C1CCC(N2)=O)C
InChi Key
LWAFSWPYPHEXKX-UHFFFAOYSA-N
InChi Code
InChI=1S/C16H24N2O3/c1-16(2,3)17-9-11(19)10-21-14-6-4-5-13-12(14)7-8-15(20)18-13/h4-6,11,17,19H,7-10H2,1-3H3,(H,18,20)
Chemical Name
5-[3-(tert-butylamino)-2-hydroxypropoxy]-3,4-dihydro-1H-quinolin-2-one
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 3.4203 mL 17.1016 mL 34.2032 mL
5 mM 0.6841 mL 3.4203 mL 6.8406 mL
10 mM 0.3420 mL 1.7102 mL 3.4203 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us