yingweiwo

Castor Oil

Alias: CCRIS 4596; NCI-C55163; Castor Oil
Cat No.:V17613 Purity: ≥98%
Castor oil is a naturally occurring triglyceride and solvent.
Castor Oil
Castor Oil Chemical Structure CAS No.: 8001-79-4
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price
500mg
1g
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Product Description
Castor oil is a naturally occurring triglyceride and solvent. Castor oil has laxative properties and can induce labor in pregnant women. Castor oil can be used as a solvent, co-solvent, stabilizer and polyol in the formation of polymer-nanoparticle composites.
Biological Activity I Assay Protocols (From Reference)
ln Vitro
Vegetable oil castor (CO) is inedible but is widely used as a bioresource material for coatings, adhesives, lubricants, biofuels, cosmetics, and biodegradable polymers. Because of its adaptable chemical characteristics, castor oil is utilized in biorefineries, medicines, and medicine [1].
ln Vivo
Natural triglycerides like castor oil have laxative qualities and can help pregnant women go into labor. Wild-type mice that are given castor oil get severe diarrhea that starts around half an hour after the oil is given. The duration of the laxative effect is roughly two hours [2].
ADME/Pharmacokinetics
Absorption, Distribution and Excretion
... Some absorption of its intestinal metabolites occurs before the intestine is cleared.
Ricinoleate, like other anionic surfactants, reduces net absorption of fluid and electrolytes and stimulates intestinal peristalsis. Ricinoleic acid also is absorbed and metabolized like other fatty acids.
Two rabbits (weight = 3 kg) were fed 6% castor oil in the diet for 18 days; fecal collection occurred during the last ten days. The utilization (uncorrected for metabolic fat) of castor oil was 92.1%, which /was/ considered to be efficient utilization. For both rabbits, the percentage of fat in the feces was 2.2%.
Adult rats (number, weights, and strain not stated) received a diet containing 48.4% castor oil for 4 to 6 weeks. Control rats received stock ration only. Feces were collected from three rats on the castor oil diet. At the end of the feeding period, excised organs/tissues were ground thoroughly and samples of phospholipid fatty acids were obtained from the liver, small intestine, and muscle; glyceride fatty acids were obtained from the liver and fat depots. There was no evidence of catharsis in any of the animals. Average percentages of Ricinoleic Acid in the phospholipid fatty acids were as follows: liver (test: 1.3 +/- 0.6% [9 analyses]; controls: 1.7 +/- 1.1% [7 analyses]), small intestine (test: 4.9 +/- 1.7% [8 analyses]; controls: 6.0 +/- 4.4% [4 analyses]), and skeletal muscle (test: 3.6 +/- 2.9% [8 analyses]; controls: 4.0 +/- 1.7% [7 analyses]). The following values are average percentages of Ricinoleic Acid in glycerides and cholesterol esters: fat depots (test: 6.8 +/- 4.2% [11 analyses]; controls: 0.5 +/- 0.5% [7 analyses]) and liver (test: 7.2 +/- 2.4% [8 analyses]; controls: 5.6 +/- 4.1% [5 analyses]). /It was/ concluded that the feeding of castor oil did not lead to the appearance of significant amounts of Ricinoleic Acid in phospholipids of the small intestine, liver, and skeletal muscle, nor in glycerides of the liver. Additionally, they concluded that ricinoleic acid is a component acid of the glycerides in the fat depots, comprising 7% of the total fatty acids. The fatty acids excreted by each of three rats amounted to 2.1%, 2.2%, and 3.6% of those ingested. Total body fat in these three animals was also determined, and it was calculated that 1% to 2% of absorbed Ricinoleic Acid was deposited in the fat depots. /It was/ concluded that Ricinoleic Acid was rapidly metabolized.
For more Absorption, Distribution and Excretion (Complete) data for Castor oil (7 total), please visit the HSDB record page.
Metabolism / Metabolites
Castor Oil is a triglyceride that is hydrolyzed in the small intestine in humans by pancreatic enzymes, leading to the release of glycerol and Ricinoleic Acid.
Within the small intestine, ... pancreatic lipases hydrolyze the oil to glycerol and ricinoleic acid. Ricinoleate, like other anionic surfactants, reduces net absorption of fluid and electrolytes and stimulates intestinal peristalsis. Ricinoleic acid also is absorbed and metabolized like other fatty acids.
Castor oil was administered intragastrically to germ-free and conventional rats (number not stated). Urine was collected at intervals over a 24-hr period. The following epoxydicarboxylic acids were detected in the urine of both germ-free and conventional rats: 3,6-epoxyoctanedioic acid; 3,6-epoxydecanedioic acid; and 3,6- epoxydodecanedioic acid. These acids were not detected in urine collected from the rats prior to dosing with castor oil, and they also were not detected in steam-sterilized castor oil. Results for the germ-free rat indicate that the cyclization of Ricinoleic Acid (hydroxy fatty acid in castor oil) to form an epoxy compound occurs endogenously and does not require the presence of intestinal bacteria.
Castor oil (10 to 15 mL) /was administered/ orally to three healthy subjects. Urine was collected between 2 and 8 hr post dosing. The following three epoxydicarboxylic acids were excreted in the urine: 3,6-epoxyoctanedioic acid; 3,6-epoxydecanedioic acid; and 3,6-epoxydodecanedioic acid.
Toxicity/Toxicokinetics
Effects During Pregnancy and Lactation
◉ Summary of Use during Lactation
Castor (Ricinus communis) beans contain triglycerides, mostly consisting of ricinoleic acid esters, and small amounts of the toxic ricin and ricine. Pressing of the beans produces castor oil and purification of the oil eliminates the ricin and ricine. Castor oil is a strong stimulant laxative. Castor beans as well as a homeopathic preparation of castor purportedly reduce milk flow, but it is also reportedly used as a galactogogue. A poultice of castor leaves is a purported galactogogue. In some parts of India, castor oil is also reportedly applied to the breasts to stimulate lactation. No scientifically valid clinical trials support any of these uses and some preparations may be toxic to the infant. Galactogogues should never replace evaluation and counseling on modifiable factors that affect milk production. No data exist on the excretion of any components of the castor plant or castor oil into breastmilk or on their safety and efficacy in nursing mothers or infants. However, little of the active ricinoleic acid is thought to be absorbed from the intestine. Because of a lack of information, other cathartics may be preferred in nursing mothers.
In traditional Indian culture, castor oil has been administered to newborn infants during the first 2 to 3 days of life, often resulting in adverse effects. Administration of castor oil to newborns is dangerous and should be avoided.
Dietary supplements do not require extensive pre-marketing approval from the U.S. Food and Drug Administration. Manufacturers are responsible to ensure the safety, but do not need to prove the safety and effectiveness of dietary supplements before they are marketed. Dietary supplements may contain multiple ingredients, and differences are often found between labeled and actual ingredients or their amounts. A manufacturer may contract with an independent organization to verify the quality of a product or its ingredients, but that does not certify the safety or effectiveness of a product. Because of the above issues, clinical testing results on one product may not be applicable to other products. More detailed information about dietary supplements is available elsewhere on the LactMed Web site.
◉ Effects in Breastfed Infants
In rural India, castor oil has been traditionally given to infants during the first 2 to 3 days of life to clear the intestine of meconium. This practice can result in paralytic ileus and aspiration pneumonia. Severe hypoalbuminemia was also reported in a 1.5-month-old infant whose grandmother gave him castor oil daily from the fifth day of life, resulting in diarrhea and malnutrition.
◉ Effects on Lactation and Breastmilk
Relevant published information was not found as of the revision date.
Interactions
The soap has protected guinea pigs against lethal doses of tetanus and diphtheria toxins. Thus, bile saponification and the formation of alkaline fatty acid esters are a normal host defense against exotoxins (protein in nature) but ineffective against endotoxins (polysaccharides).
References

[1]. Castor oil: a suitable green source of capping agent for nanoparticle syntheses and facile surface functionalization. R Soc Open Sci. 2018 Aug 15;5(8):180824.

[2]. Castor oil induces laxation and uterus contraction via ricinoleic acid activating prostaglandin EP3 receptors. Proc Natl Acad Sci U S A. 2012 Jun 5;109(23):9179-84.

Additional Infomation
Castor oil appears as pale-yellow or almost colorless transparent viscous liquid with a faint mild odor and nauseating taste. Density 0.95 g / cm3. A mixture of glycerides, chiefly ricinolein (the glyceride of ricinoleic acid).
Oil obtained from seeds of Ricinus communis that is used as a cathartic and as a plasticizer.
See also: Castor Oil (annotation moved to).
Mechanism of Action
Castor oil has been classified as a stimulant because lipolysis in small intestine liberates ricinoleic acid ... /which/ stimulates smooth muscle and inhibits the absorption of water and electrolytes resulting in fluid accumulation in vitro, but it is not known whether these changes affect fluid movement or...laxative effect in vivo.
In a study involving male Crl:CD BR rats, the findings suggested that castor oil-induced diarrhea is the result of activation of NK1 and NK2 receptors by endogenous tachykinins.
Therapeutic Uses
Cathartics; Emollients; Pharmaceutic Aids
Therapeutically, castor oil has been administered orally for its laxative action... /Former use/
Castor oil is used in cosmetics and foods and orally, parenterally, and topically in pharmaceutical formulations. It is generally regarded as a relatively nontoxic and nonirritant material when used as an excipient.
...It is usually administered only when prompt, thorough evacuation of the bowel is desired, as in preparation for certain radiological examinations. /Former/
For more Therapeutic Uses (Complete) data for Castor oil (13 total), please visit the HSDB record page.
Drug Warnings
Castor oil has been used therapeutically as a laxative and oral administration of large quantities may cause nausea, vomiting, colic, and severe purgation. It should not be given when intestinal obstruction is present.
Castor oil is contraindicated in pregnant or menstruating women.
... Should not be taken late in the day with the expectation of sleeping.
Sensitivity to castor oil when used medicinally is extremely rare.
For more Drug Warnings (Complete) data for Castor oil (12 total), please visit the HSDB record page.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C57H104O9
Molecular Weight
933.45
Exact Mass
932.768
CAS #
8001-79-4
PubChem CID
14030006
Appearance
Colorless to light yellow liquid
Density
1.0±0.1 g/cm3
Boiling Point
879.2±65.0 °C at 760 mmHg
Melting Point
-12ºC
Flash Point
224.1±27.8 °C
Vapour Pressure
0.0±0.6 mmHg at 25°C
Index of Refraction
1.490
LogP
17.72
Hydrogen Bond Donor Count
3
Hydrogen Bond Acceptor Count
9
Rotatable Bond Count
53
Heavy Atom Count
66
Complexity
1110
Defined Atom Stereocenter Count
0
SMILES
O([H])C([H])(C([H])([H])/C(/[H])=C(/[H])\C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C(=O)OC([H])(C([H])([H])OC(C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])/C(/[H])=C(/[H])\C([H])([H])C([H])(C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H])O[H])=O)C([H])([H])OC(C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])/C(/[H])=C(/[H])\C([H])([H])C([H])(C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H])O[H])=O)C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H]
InChi Key
ZEMPKEQAKRGZGQ-AAKVHIHISA-N
InChi Code
InChI=1S/C57H104O9/c1-4-7-10-31-40-51(58)43-34-25-19-13-16-22-28-37-46-55(61)64-49-54(66-57(63)48-39-30-24-18-15-21-27-36-45-53(60)42-33-12-9-6-3)50-65-56(62)47-38-29-23-17-14-20-26-35-44-52(59)41-32-11-8-5-2/h25-27,34-36,51-54,58-60H,4-24,28-33,37-50H2,1-3H3/b34-25-,35-26-,36-27-
Chemical Name
2,3-bis[[(Z)-12-hydroxyoctadec-9-enoyl]oxy]propyl (Z)-12-hydroxyoctadec-9-enoate
Synonyms
CCRIS 4596; NCI-C55163; Castor Oil
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
Ethanol : ~4.55 mg/mL (~50.61 mM)
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.0713 mL 5.3565 mL 10.7129 mL
5 mM 0.2143 mL 1.0713 mL 2.1426 mL
10 mM 0.1071 mL 0.5356 mL 1.0713 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us