yingweiwo

CC-401 HCl

Alias: CC401 HCl; CC 401; CC-401
Cat No.:V2978 Purity: ≥98%
CC-401 HCl (CC401 hydrochloride) is an anthrapyrazolone-based inhibitor of c-Jun N terminal kinase (JNK) with potential anticancer activity.
CC-401 HCl
CC-401 HCl Chemical Structure CAS No.: 1438391-30-0
Product category: JNK
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
10mg
25mg
50mg
100mg
250mg
Other Sizes

Other Forms of CC-401 HCl:

  • CC-401
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

CC-401 HCl (CC401 hydrochloride) is an anthrapyrazolone-based inhibitor of c-Jun N terminal kinase (JNK) with potential anticancer activity. It inhibits all three JNK forms with a Ki value between 25 and 50 nM. It limits the dosage-dependent phosphorylation of c-Jun brought on by sorbitol. However, CC-401 is unable to stop the phosphorylation of JNK, p38, or ERK that is brought on by sorbitol. Celgene Corporation created the specific JNK inhibitor, CC-401, as a competitive inhibitor of the ATP binding site in the active, phosphorylated form of JNK. When compared to other related kinases, CC-401's selectivity for JNK is at least 40 times higher. However, CC-401's phase 1 clinical trials for myeloid leukemia (NCT00126893) were discontinued.

Biological Activity I Assay Protocols (From Reference)
Targets
JNK (Ki = 25-50 nM)
ln Vitro
CC-401, a small molecule that is a specific inhibitor of all three JNK isoforms. The N-terminal activation domain of the transcription factor c-Jun is prevented from being phosphorylated when the drug CC-401 binds the ATP binding site in JNK in a competitive manner. Using osmotic stress on the HK-2 human tubular epithelial cell line, the specificity of this inhibitor is examined in vitro.
ln Vivo
CC-401 treatment from days 7 to 24 slows the progression of proteinuria, which is significantly reduced compared to the no-treatment and vehicle groups at days 14 and 21. In contrast to proteinuria at day 5, there is still an increase in the severity of proteinuria in CC-401-treated rats at day 21. At day 24, the vehicle and no-treatment groups exhibited renal impairment as evidenced by an increase in serum creatinine. Treatment with CC-401 stops this from happening. In comparison to the control, bevazicumab and oxaliplatin treatments moderately increased the staining of p-JNK, and the p-cJun content was significantly lower in the samples treated with CC-401, indicating effective JNK inhibition. In combination treatments with CC-401, DNA damage is slightly increased.
Enzyme Assay
CC-401 is a potent, specific, second generation and ATP-competitive anthrapyrazolone c-Jun N terminal kinase (JNK) inhibitor with potential antineoplastic activity. It has a Ki of between 25 and 50 nM and is a strong inhibitor of all three JNK forms. It limits the dosage-dependent phosphorylation of c-Jun brought on by sorbitol. However, CC-401 is unable to stop the phosphorylation of JNK, p38, or ERK that is brought on by sorbitol. Celgene Corporation created the specific JNK inhibitor, CC-401, as a competitive inhibitor of the ATP binding site in the active, phosphorylated form of JNK. When compared to other related kinases, CC-401's selectivity for JNK is at least 40 times higher.
Cell Assay
In DMEM/F12 media that has been supplemented with 10% FCS, 10 ng/mL EGF, and 10 g/mL bovine pituitary extract, human HK-2 proximal tubular epithelial cells are cultured. Cells are seeded into six-well plates and allowed to adhere over night. The following day, the medium is changed to DMEM/F12 supplemented with only 0.5% FCS, and the cells are confluent by this point. Confluent cells are treated with CC-401 prepared in citric acid (pH 5.5), which is added 1 hour before 300 mM sorbitol is added. Cells are harvested using urea-RIPA buffer 30 minutes later. There are three experiments, each with two replicates for each condition. After 48 hours, supernatants are collected and tested for TGF-β1 content using a commercial ELISA kit. Six replicates are used in each experiment across three different conditions[1].
Animal Protocol
Mice: Female adult severe combined immunodeficient mice (C.B.17 SCID), which are 8–10 weeks old, are used to evaluate the effectiveness of CC-401 in inhibiting JNK signaling in anti-angiogenic and Oxaliplatin combination therapy in a mouse xenograft model. HT29 cells (1×106 cells) are subcutaneously injected into the left flank of the mice to produce tumors. To treat the mice with bevacizumab, oxaliplatin, CC401, and the proper combinations of bevacizumab, oxaliplatin, and CC-401, the tumors were divided into eight groups of eight mice each when they reached a size of about 200 mm3. The intraperitoneal injection of 5 mg/kg of bevacizumab is given to mice in the bevacizumab treatment group every three days for 21 days. The Oxaliplatin treatment group receives 2 weeks of intraperitoneal injections of 5 mg/kg Oxaliplatin each week. Every three days, 25 mg/kg of the CC-401 treatment group receives an intraperitoneal injection. The combination treatment groups are given Bevacizumab (5 mg/kg every 3 days), Oxaliplatin (5 mg/kg every week for 2 weeks), and CC-401 (25 mg/kg every 3 days). In the control group, intraperitoneal saline is administered. Every three days, the body's weight and tumor volume are measured. The tumor volume is determined. The time difference between control and treated tumors to grow from 200 to 800 mm3 is used to calculate the tumor growth delay. In order to calculate the tumor growth delay, mice were given treatments until the tumor volume reached 800 mm3. Mice are sacrificed for immunohistochemistry on day 9 after treatments for tumor processing and staining.
Rats: Female WKY rats weighing 180–220 g are employed. Injections of sheep anti-rat GBM serum are administered intravenously five days later (referred to as day 0), after groups of nine or ten rats have received subcutaneous injections of 5 mg of sheep IgG in Freund's complete adjuvant. In this study, treatment with CC-401 (200 mg/kg/b.i.d. by oral gavage) or the control (sodium citrate) is started seven days after anti-GBM serum administration and continued twice daily until the animals are killed on day 24. At days 7 or 24 after receiving an injection of anti-GBM serum, additional groups of untreated rats are put to death. On days 5, 14, and 21, urine is collected from animals that have spent 22 hours in metabolic cages. At the time of death, blood is collected. Urinary and serum creatinine and protein levels are analyzed.
References

[1]. A pathogenic role for c-Jun amino-terminal kinase signaling in renal fibrosis and tubular cell apoptosis. J Am Soc Nephrol. 2007 Feb;18(2):472-84.

[2]. Inhibition of JNK Sensitizes Hypoxic Colon Cancer Cells to DNA-Damaging Agents. Clin Cancer Res. 2015 Sep 15;21(18):4143-52.

[3]. Blockade of the c-Jun amino terminal kinase prevents crescent formation and halts established anti-GBM glomerulonephritis in the rat. Lab Invest. 2009 Apr;89(4):470-84.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C22H25CLN6O
Molecular Weight
424.93
Exact Mass
424.177
Elemental Analysis
C, 62.18; H, 5.93; Cl, 8.34; N, 19.78; O, 3.77
CAS #
1438391-30-0
Related CAS #
CC-401;395104-30-0
PubChem CID
66576998
Appearance
White to off-white solid powder
Hydrogen Bond Donor Count
3
Hydrogen Bond Acceptor Count
5
Rotatable Bond Count
6
Heavy Atom Count
30
Complexity
516
Defined Atom Stereocenter Count
0
SMILES
Cl[H].O(C1=C([H])C([H])=C([H])C(=C1[H])C1C2C([H])=C(C3=NC([H])=NN3[H])C([H])=C([H])C=2N([H])N=1)C([H])([H])C([H])([H])N1C([H])([H])C([H])([H])C([H])([H])C([H])([H])C1([H])[H]
InChi Key
OIBVXKYKWOUGAO-UHFFFAOYSA-N
InChi Code
InChI=1S/C22H24N6O.ClH/c1-2-9-28(10-3-1)11-12-29-18-6-4-5-16(13-18)21-19-14-17(22-23-15-24-27-22)7-8-20(19)25-26-21;/h4-8,13-15H,1-3,9-12H2,(H,25,26)
Chemical Name
3-[3-(2-piperidin-1-ylethoxy)phenyl]-5-(1H-1,2,4-triazol-5-yl)-1H-indazole;hydrochloride
Synonyms
CC401 HCl; CC 401; CC-401
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: Please store this product in a sealed and protected environment, avoid exposure to moisture.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: ~10 mM in DMSO
Water: <1 mg/mL
Ethanol: <1 mg/mL
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (5.88 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (5.88 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (5.88 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


Solubility in Formulation 4: 14.29 mg/mL (33.63 mM) in PBS (add these co-solvents sequentially from left to right, and one by one), clear solution; with ultrasonication (<60°C).

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.3533 mL 11.7666 mL 23.5333 mL
5 mM 0.4707 mL 2.3533 mL 4.7067 mL
10 mM 0.2353 mL 1.1767 mL 2.3533 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Biological Data
  • CC-401

    Hypoxia causes DNA damage in cell-specific manner.2015 Sep 15;21(18):4143-52.
  • CC-401

    Immunochistochemical analysis of HT29-derived mouse xenografts confirms effects of JNK inhibition on cytotoxicity of oxaliplatin under hypoxia.2015 Sep 15;21(18):4143-52.

  • CC-401

    Down-regulation of JNK isoforms results in varying effects on cytotoxicity of chemotherapeutic drugs: inhibition of JNK1 sensitizes HT29 cells to oxaliplatin under hypoxia.2015 Sep 15;21(18):4143-52.
Contact Us