yingweiwo

Ceralasertib formate (AZD-6738)

Alias: AZD-6738; AZD6738; 1352280-98-8; Ceralasertib formate; AKOS040748106; AZD 6738
Cat No.:V9179 Purity: ≥98%
Ceralasertib formate (AZD6738) is a novel, potent andorally bioavailable morpholino-pyrimidine-based, and selective inhibitor of the ATR (ataxia telangiectasia and rad3 related) kinase with IC50 of 2.5 nM.
Ceralasertib formate (AZD-6738)
Ceralasertib formate (AZD-6738) Chemical Structure CAS No.: 1352280-98-8
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price
5mg
50mg
500mg

Other Forms of Ceralasertib formate (AZD-6738):

  • Ceralasertib (AZD-6738)
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Ceralasertib formate (AZD6738) is a novel, potent and orally bioavailable morpholino-pyrimidine-based, and selective inhibitor of the ATR (ataxia telangiectasia and rad3 related) kinase with IC50 of 2.5 nM. ATR is a serine/threonine protein kinase that is upregulated in various cancer cells, it plays a key role in DNA repair, cell cycle progression, and survival; it is activated by DNA damage caused during DNA replication-associated stress. AZD6738 has potential anticancer activity against non-small cell lung cancer (NSCLC). AZD6738 selectively inhibits ATR activity by blocking the downstream phosphorylation of the serine/threonine protein kinase CHK1, which prevents ATR-mediated signaling, and results in the inhibition of DNA damage checkpoint activation, disruption of DNA damage repair, and the induction of tumor cell apoptosis. AZD6738 also sensitizes tumor cells to chemo-(e,g, cisplatin) and radiotherapy.

Biological Activity I Assay Protocols (From Reference)
Targets
ATR ( IC50 = 1 nM ); PI3Kδ ( IC50 = 6.8 μM ); DYRK ( IC50 = 10.8 μM )
ln Vitro
Ceralasertib (AZD6738) is a potent inhibitor of ATR kinase activity, with an IC50 of 0.001 μM against the isolated enzyme and 0.074 μM against the phosphorylation of CHK1 in cells that is dependent on ATR kinase. In non-small cell lung cancer (NSCLC) cell lines, celeralasertib (AZD6738) causes senescence and cell death. Four Kras mutant cell lines are less viable when ceralasertib (AZD6738) is used; H23, H460, A549, and H358 have the lowest GI50 and the largest maximal inhibition (1.05 μM, 88.0% and 2.38 μM, 86.2%, respectively). In NSCLC cell lines with intact ATM kinase signaling, ceralasertib (AZD6738) amplifies the cytotoxicity of CDDP and NSC 613327, and in ATM-deficient NSCLC cells, it potently synergizes with CDDP[1]. With IC50 values less than 1 μM, ceralasertib (AZD6738) inhibits human breast cancer cell lines using the MTT assay. Ceralasertib (AZD6738) causes apoptosis and cell cycle arrest. It suppresses cell proliferative signaling molecules and DNA damage response molecules[2].
ln Vivo
Ceralasertib (AZD6738) and ATR kinase inhibition given daily for 14 days in a row improves CDDP's therapeutic efficacy in xenograft models and is well tolerated by mice. It's amazing how well CDDP and Ceralasertib (AZD6738) work together to treat ATM-deficient lung cancer xenografts[1].
Enzyme Assay
AZD6738 is a potent inhibitor of ATR kinase activity, with an IC50 of 0.001 μM against the isolated enzyme and 0.074 μM against the phosphorylation of CHK1 in cells that is dependent on ATR kinase. ATR and ATM are DNA damage signaling kinases that phosphorylate several thousand substrates. ATR kinase activity is increased at damaged replication forks and resected DNA double-strand breaks (DSBs). ATM kinase activity is increased at DSBs. ATM has been widely studied since ataxia telangiectasia individuals who express no ATM protein are the most radiosensitive patients identified. Since ATM is not an essential protein, it is widely believed that ATM kinase inhibitors will be well-tolerated in the clinic. ATR has been widely studied, but advances have been complicated by the finding that ATR is an essential protein and it is widely believed that ATR kinase inhibitors will be toxic in the clinic.
Cell Assay
Ceralasertib (AZD6738) is diluted in DMSO to the appropriate working concentrations after being dissolved at a 30 mM concentration. For Ceralasertib (AZD6738) dose response experiments, the final DMSO concentration in media for all conditions and controls is 0.1%; for Ceralasertib (AZD6738) + chemotherapy viability experiments, it is 0.05%; and for all experiments involving 0.3 μM and 1.0 μM doses of Ceralasertib (AZD6738), it is 0.025%[1].
Animal Protocol
Mice: Ceralasertib (AZD6738) is diluted 1:5 in propylene glycol after being dissolved in DMSO at a concentration of 25 mg/mL or 50 mg/mL. Ceralasertib (AZD6738) is given orally as a gavage for 14 days at a dose of 25 mg/kg (H23) or 50 mg/kg (H460). 10 mL/kg is the dosage volume.[1].
References
[1]. The orally active and bioavailable ATR kinase inhibitor AZD6738 potentiates the anti-tumor effects of CDDP to resolve ATM-deficient non-small cell lung cancer in vivo.Oncotarget. 2015 Dec 29;6(42):44289-305.
[2]. Anti-tumor activity of the ATR inhibitor AZD6738 in HER2 positive breast cancer cells. Int J Cancer. 2017 Jan 1;140(1):109-119.
[3]. Lancet.2015 Feb 26;385 Suppl 1:S58.
[4]. Sci Rep.2015 Aug 27;5:13545.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C21H26N6O4S
Exact Mass
458.1736245
Elemental Analysis
C, 55.01; H, 5.72; N, 18.33; O, 13.96; S, 6.99
CAS #
1352280-98-8
Related CAS #
1352226-88-0;1352280-98-8 (formate);1352226-97-1 (racemic);
PubChem CID
154701782
Appearance
Typically exists as solids (or liquids in special cases) at room temperature
tPSA
154Ų
SMILES
C[C@H]1N(C2=CC(C3([S@@](=N)(C)=O)CC3)=NC(C4=C5C(NC=C5)=NC=C4)=N2)CCOC1.O=CO
InChi Key
JOKLXYXIZOXQHY-FQAMYIAXSA-N
InChi Code
InChI=1S/C20H24N6O2S.CH2O2/c1-13-12-28-10-9-26(13)17-11-16(20(5-6-20)29(2,21)27)24-19(25-17)15-4-8-23-18-14(15)3-7-22-182-1-3/h3-4,7-8,11,13,21H,5-6,9-10,12H2,1-2H3,(H,22,23)1H,(H,2,3)/t13-,29-/m1./s1
Chemical Name
4-[4-[1-[[S(R)]-S-Methylsulfonimidoyl]cyclopropyl]-6-[(3R)-3-methyl-4-morpholinyl]-2-pyrimidinyl]-1H-pyrrolo[2,3-b]pyridine, formic acid
Synonyms
AZD-6738; AZD6738; 1352280-98-8; Ceralasertib formate; AKOS040748106; AZD 6738
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us