yingweiwo

Cevidoplenib

Cat No.:V17949 Purity: ≥98%
Cevidoplenib (SKI-O-703) is an orally bioactive spleen tyrosine kinase (Syk) inhibitor (antagonist) with potential anti~inflammatory and Immune-modulatory effects.
Cevidoplenib
Cevidoplenib Chemical Structure CAS No.: 1703788-21-9
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
5mg
10mg
Other Sizes

Other Forms of Cevidoplenib:

  • Cevidoplenib dimesylate (SKI-O-703 dimesylate)
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
Cevidoplenib (SKI-O-703) is an orally bioactive spleen tyrosine kinase (Syk) inhibitor (antagonist) with potential anti~inflammatory and Immune-modulatory effects. Cevidoplenib is also the mesylate form of SKI-O-592. Cevidoplenib and SKI-O-592 inhibit BCR-mediated B cell survival, proliferation, and differentiation. SKI-O-592 also potently inhibits multiple kinase activities, with IC50s of 6.2 nM (Syk), 1.859 μM (Jak2), 5.807 μM (Jak3), 0.412 μM (RET), 0.687 μM (KOR), and 1.783 respectively. μM (FLT3), 16.96 μM (FGFR1), 5.662 μM (FGFR3) and 0.709 μM (Pyk2).
Biological Activity I Assay Protocols (From Reference)
ln Vivo
Following oral treatment, cevidoplenib binds to SYK and inhibits its activity, preventing inflammatory cells such as mast cells, neutrophils, macrophages, and natural killer cells from signaling through the Fc and B-cell receptors (BCR). (NK) and B lymphocytes. 2].
References

[1]. A novel selective spleen tyrosine kinase inhibitor SKI-O-703 (cevidoplenib) ameliorates lupus nephritis and serum-induced arthritis in murine models. Clin Exp Immunol. 2023 Mar 8;211(1):31-45.

[2]. International Nonproprietary Names for Pharmaceutical Substances (INN). WHO Drug Information, Vol. 31, No. 4, 2017.

[3]. cevidoplenib dimesylate.

Additional Infomation
Cevidoplenib is an orally available inhibitor of spleen tyrosine kinase (SYK), with potential anti-inflammatory and immunomodulating activities. Upon oral administration, cevidoplenib binds to and inhibits the activity of SYK, blocking Fc receptor and B-cell receptor (BCR)-mediated signaling in inflammatory cells, including macrophages, neutrophils, mast cells, natural killer (NK) cells and B-cells. This leads to the inhibition of the activation of these inflammatory cells, and the related inflammatory responses and tissue damage. SYK, a non-receptor cytoplasmic protein tyrosine kinase widely expressed in hematopoietic cells, plays a key role in Fc receptor and B-cell receptor signaling in inflammatory cells. It is involved in coupling activated immunoreceptors, such as Fc receptors and B-cell receptors, to signal downstream events that mediate diverse cellular responses, including proliferation, differentiation, and phagocytosis, which are important for allergic and antibody-mediated immune diseases such as immune thrombocytopenia (ITP).
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C25H27N7O3
Molecular Weight
473.526984453201
Exact Mass
473.217
CAS #
1703788-21-9
Related CAS #
Cevidoplenib dimesylate;2043659-93-2
PubChem CID
91754477
Appearance
Off-white to gray solid powder
Density
1.5±0.1 g/cm3
Boiling Point
751.1±70.0 °C at 760 mmHg
Flash Point
408.0±35.7 °C
Vapour Pressure
0.0±2.6 mmHg at 25°C
Index of Refraction
1.761
LogP
-0.12
Hydrogen Bond Donor Count
2
Hydrogen Bond Acceptor Count
8
Rotatable Bond Count
7
Heavy Atom Count
35
Complexity
769
Defined Atom Stereocenter Count
1
SMILES
CC1=NN(C=C1CN2C[C@@H](CO2)O)C3=NC(=NC=C3)NC4=CC5=C(C=C4)N(C=C5C(=O)C6CC6)C
InChi Key
YCZUBLQESBVOSH-IBGZPJMESA-N
InChi Code
InChI=1S/C25H27N7O3/c1-15-17(10-31-12-19(33)14-35-31)11-32(29-15)23-7-8-26-25(28-23)27-18-5-6-22-20(9-18)21(13-30(22)2)24(34)16-3-4-16/h5-9,11,13,16,19,33H,3-4,10,12,14H2,1-2H3,(H,26,27,28)/t19-/m0/s1
Chemical Name
cyclopropyl-[5-[[4-[4-[[(4S)-4-hydroxy-1,2-oxazolidin-2-yl]methyl]-3-methylpyrazol-1-yl]pyrimidin-2-yl]amino]-1-methylindol-3-yl]methanone
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~50 mg/mL (~105.59 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (5.28 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: 2.5 mg/mL (5.28 mM) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), suspension solution; with ultrasonication.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.1118 mL 10.5590 mL 21.1180 mL
5 mM 0.4224 mL 2.1118 mL 4.2236 mL
10 mM 0.2112 mL 1.0559 mL 2.1118 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us