Size | Price | Stock | Qty |
---|---|---|---|
100μg |
|
||
500μg |
|
||
1mg |
|
||
5mg |
|
||
10mg |
|
||
Other Sizes |
|
Purity: ≥99.66%
cGAMP (also known as Cyclic GMP-AMP; 3',3'-cGAMP) is a cyclic nucleotide acting as a STING agonist. It is a potent and endogenous second messenger in metazoans and triggers interferon production in response to cytosolic DNA. cGAMP induced IFNβ RNA robustly even at concentrations as low as 10 nM. cGAMP was much more potent than c-di-GMP in inducing IFNβ based on ELISA assays. cGAMP was also more potent than c-di-GMP and c-di-AMP in activating IRF3. cGAMP binds to and activates STING to trigger the downstream signaling cascades.
Targets |
Endogenous Metabolite; second messenger; STING/stimulator of interferon genes
|
---|---|
ln Vitro |
The development of mouse tumor cells is stimulated by cGAMP disodium [2]. In vitro, human and mouse dendritic cells are directly activated by cGAMP disodium [2]. Patient fibroblasts exhibited enhanced transcription of IFNB1 but not of genes producing tumor factor (TNF), interleukin 6 (IL6), or interleukin 1 (IL1) when treated with cGAMP disodium [3]. The endoplasmic reticulum (ER) resident protein STING is activated by cGAMP disodium, which results in the induction of an antiviral state and type I segregin walking [4].
|
ln Vivo |
The splenocytes of immunized mice are stimulated to produce suggestive cytokines by cGAMP disodium (5 μg)—a nasal mucosal adjuvant [2].
The recently discovered mammalian enzyme cyclic GMP-AMP synthase produces cyclic GMP-AMP (cGAMP) after being activated by pathogen-derived cytosolic double stranded DNA. The product can stimulate STING-dependent interferon type I signaling. Here, we explore the efficacy of cGAMP as a mucosal adjuvant in mice. In this study, researchers show that cGAMP can enhance the adaptive immune response to the model antigen ovalbumin. It promotes antigen specific IgG and a balanced Th1/Th2 lymphocyte response in immunized mice. A characteristic of the cGAMP-induced immune response is the slightly reduced induction of interleukin-17 as a hallmark of Th17 activity – a distinct feature that is not observed with other cyclic di-nucleotide adjuvants. We further characterize the innate immune stimulation activity in vitro on murine bone marrow-derived dendritic cells and human dendritic cells. The observed results suggest the consideration of cGAMP as a candidate mucosal adjuvant for human vaccines[2]. |
Enzyme Assay |
Cytosolic DNA induces type I interferons and other cytokines that are important for antimicrobial defense but can also result in autoimmunity. This DNA signaling pathway requires the adaptor protein STING and the transcription factor IRF3, but the mechanism of DNA sensing is unclear. We found that mammalian cytosolic extracts synthesized cyclic guanosine monophosphate-adenosine monophosphate (cyclic GMP-AMP, or cGAMP) in vitro from adenosine triphosphate and guanosine triphosphate in the presence of DNA but not RNA. DNA transfection or DNA virus infection of mammalian cells also triggered cGAMP production. cGAMP bound to STING, leading to the activation of IRF3 and induction of interferon-β. Thus, cGAMP functions as an endogenous second messenger in metazoans and triggers interferon production in response to cytosolic DNA[1].
|
Cell Assay |
In vitro stimulation of primary cells[2]
The culture medium of primary cells was supplemented with 5 µg/ml (murine cells) or 60 µg/ml (human cells) of c-di-AMP or cGAMP or left without additive. Cells were incubated for 24 h at 37°C. Scrape loading[3] HEK STING cells were seeded at a density of 2.5 × 105 cells ml−1 in 96-well plates. After 16 h cGAMP(2′-5′) was added to the medium to a final concentration of 50 μg ml−1. Monolayers of cells were manually wounded by six scratches per well using an 18G needle. Images were acquired after 4–8 h. |
Animal Protocol |
Animal/Disease Models: Female C57BL/6 (H-2b) mice 6-8 weeks old [2]
Doses: 5 µg Route of Administration: Nostril mucosal adjuvant Experimental Results: Compared with serum from OVA-immunized mice, using cGAMP adjuvant Ovalbumin (OVA)-specific IgA and total IgG as well as IgG1 and IgG2c titers were higher in the serum of OVA-immunized mice. Mouse immunization experiments[2] Five animals per group were immunized i. n. on days 0, 14 and 28. Animals were anesthetized with Isoflurane and treated 10 µl per nostril with 15 µg OVA alone or co-administered with 5 µg per dose of c-di-AMP, cGAMP or cholera toxin B subunit in Ampuwa or with Ampuwa alone in the control group (mock immunization). On day 42 after immunization animals were sacrificed and samples were collected. |
References | |
Additional Infomation |
The innate immune defence of multicellular organisms against microbial pathogens requires cellular collaboration. Information exchange allowing immune cells to collaborate is generally attributed to soluble protein factors secreted by pathogen-sensing cells. Cytokines, such as type I interferons (IFNs), serve to alert non-infected cells to the possibility of pathogen challenge. Moreover, in conjunction with chemokines they can instruct specialized immune cells to contain and eradicate microbial infection. Several receptors and signalling pathways exist that couple pathogen sensing to the induction of cytokines, whereas cytosolic recognition of nucleic acids seems to be exquisitely important for the activation of type I IFNs, master regulators of antiviral immunity. Cytosolic DNA is sensed by the receptor cyclic GMP-AMP (cGAMP) synthase (cGAS), which catalyses the synthesis of the second messenger cGAMP(2'-5'). This molecule in turn activates the endoplasmic reticulum (ER)-resident receptor STING, thereby inducing an antiviral state and the secretion of type I IFNs. Here we find in murine and human cells that cGAS-synthesized cGAMP(2'-5') is transferred from producing cells to neighbouring cells through gap junctions, where it promotes STING activation and thus antiviral immunity independently of type I IFN signalling. In line with the limited cargo specificity of connexins, the proteins that assemble gap junction channels, most connexins tested were able to confer this bystander immunity, thus indicating a broad physiological relevance of this local immune collaboration. Collectively, these observations identify cGAS-triggered cGAMP(2'-5') transfer as a novel host strategy that serves to rapidly convey antiviral immunity in a transcription-independent, horizontal manner.[3]
|
Molecular Formula |
C20H25N10NAO13P2
|
---|---|
Molecular Weight |
698.408995389938
|
Exact Mass |
718.063
|
CAS # |
2407516-83-8
|
Related CAS # |
cGAMP diammonium;cGAMP;849214-04-6
|
PubChem CID |
137120249
|
Appearance |
White to off-white solid powder
|
Source |
Endogenous Metabolite
|
Hydrogen Bond Donor Count |
5
|
Hydrogen Bond Acceptor Count |
19
|
Rotatable Bond Count |
2
|
Heavy Atom Count |
47
|
Complexity |
1290
|
Defined Atom Stereocenter Count |
8
|
SMILES |
O[C@@H]1[C@]2([H])OP(OC[C@@]3([H])O[C@@H](N4C=NC5=C(N=CN=C45)N)[C@H](O)[C@]3([H])OP(O)(=O)OC[C@@]2([H])O[C@H]1N1C=NC2C(N=C(N)NC1=2)=O)(O)=O.[NaH]
|
InChi Key |
MFPHQIYDBUVTRL-DQNSRKNCSA-L
|
InChi Code |
InChI=1S/C20H24N10O13P2.2Na/c21-14-8-15(24-3-23-14)29(4-25-8)18-10(31)12-6(40-18)1-38-45(36,37)43-13-7(2-39-44(34,35)42-12)41-19(11(13)32)30-5-26-9-16(30)27-20(22)28-17(9)33;;/h3-7,10-13,18-19,31-32H,1-2H2,(H,34,35)(H,36,37)(H2,21,23,24)(H3,22,27,28,33);;/q;2*+1/p-2/t6-,7-,10-,11-,12-,13-,18-,19-;;/m1../s1
|
Chemical Name |
disodium;2-amino-9-[(1S,6R,8R,9R,10S,15R,17R,18R)-17-(6-aminopurin-9-yl)-9,18-dihydroxy-3,12-dioxido-3,12-dioxo-2,4,7,11,13,16-hexaoxa-3λ5,12λ5-diphosphatricyclo[13.3.0.06,10]octadecan-8-yl]-1H-purin-6-one
|
Synonyms |
Cyclic GMP-AMP; G14522; Cyclic GMP-AMP disodium;3',3'-cGAMP disodium
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month Note: Please store this product in a sealed and protected environment, avoid exposure to moisture. |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
H2O : ~180 mg/mL (~250.57 mM)
|
---|---|
Solubility (In Vivo) |
Solubility in Formulation 1: 100 mg/mL (139.20 mM) in PBS (add these co-solvents sequentially from left to right, and one by one), clear solution; with sonication.
 (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 1.4318 mL | 7.1591 mL | 14.3182 mL | |
5 mM | 0.2864 mL | 1.4318 mL | 2.8636 mL | |
10 mM | 0.1432 mL | 0.7159 mL | 1.4318 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.