Size | Price | Stock | Qty |
---|---|---|---|
5mg |
|
||
10mg |
|
||
25mg |
|
||
50mg |
|
||
100mg |
|
||
250mg |
|
||
Other Sizes |
|
ln Vitro |
Chelidonine (5, 10 and 20 μM; 3–4 days) resulted in lesions and ventral curling in Dugesia japonica; at 20 μM, Djmcm2 expression was greatly reduced, but at 5 and 10 μM, no reduction was seen; also, it blocked stem cells' ability to advance through the cell cycle [2]. Melanoma cell lines are susceptible to the cytotoxic effects of chelidonine (0–3 μg/mL; 48 hours) [3]. In A-375 cells, the mitochondrial membrane potential (MMP) was 50% lower at 1 and 1.5 μg/mL and at 3 μg/mL of chelidonine (1, 2, and 3 μg/mL; 24 hours). 62% decrease [3].
|
---|---|
Cell Assay |
Cytotoxicity assay [3]
Cell Types: A-375, A-375-p53DD and A-375-p53sh Tested Concentrations: 0-3 μg/mL Incubation Duration: 48 hrs (hours) Experimental Results: demonstrated cytotoxic activity against melanoma cell lines, The values were 0.910±0.017 μg/ml, 0.634±0.009 μg/ml and 0.772±0.045 μg/ml in A-375, A-375-p53DD and A-375-p53sh, respectively. |
ADME/Pharmacokinetics |
Metabolism / Metabolites
Paraoxonase (PON1) is a key enzyme in the metabolism of organophosphates. PON1 can inactivate some organophosphates through hydrolysis. PON1 hydrolyzes the active metabolites in several organophosphates insecticides as well as, nerve agents such as soman, sarin, and VX. The presence of PON1 polymorphisms causes there to be different enzyme levels and catalytic efficiency of this esterase, which in turn suggests that different individuals may be more susceptible to the toxic effect of OP exposure. |
Toxicity/Toxicokinetics |
Toxicity Summary
Chelidonine is a cholinesterase or acetylcholinesterase (AChE) inhibitor. A cholinesterase inhibitor (or 'anticholinesterase') suppresses the action of acetylcholinesterase. Because of its essential function, chemicals that interfere with the action of acetylcholinesterase are potent neurotoxins, causing excessive salivation and eye-watering in low doses, followed by muscle spasms and ultimately death. Nerve gases and many substances used in insecticides have been shown to act by binding a serine in the active site of acetylcholine esterase, inhibiting the enzyme completely. Acetylcholine esterase breaks down the neurotransmitter acetylcholine, which is released at nerve and muscle junctions, in order to allow the muscle or organ to relax. The result of acetylcholine esterase inhibition is that acetylcholine builds up and continues to act so that any nerve impulses are continually transmitted and muscle contractions do not stop. Among the most common acetylcholinesterase inhibitors are phosphorus-based compounds, which are designed to bind to the active site of the enzyme. The structural requirements are a phosphorus atom bearing two lipophilic groups, a leaving group (such as a halide or thiocyanate), and a terminal oxygen. Chelidonine has an acetylcholinesterase and butyrylcholinesterase inhibitory activity. (Wikipedia) Generally, some of the alkaloid extract from Chelidonium majus, which contains protoberberine and benzo[c]phenanthridine alkaloids such as chelidonine, intercalate DNA, and in consequence inhibit DNA and RNA polymerase, topoisomerase, telomerase, and even ribosomal protein biosynthesis or bind to tubulin/microtubules, thus acting as spindle poisons. Chelidonine has the ability to overcome multidrug resistance (MDR) of different cancer cell lines through interaction with ABC-transporters, CYP3A4 and GST, by induction of apoptosis, and cytotoxic effects. It induced apoptosis in MDR cells which was accompanied by an activation of caspase-3, -8,-6/9, and phosphatidyl serine (PS) exposure. (A15442) Chelidonine is known to cause mitotic arrest and to interact weakly with tubulin. Chelidonine has proven to be a weak inhibitor of cell growth in two normal (monkey kidney and Hs27), two transformed (Vero and Graham 293) and two malignant (WHCO5 and HeLa) cell lines. (A15443) |
References |
|
Additional Infomation |
Chelidonine is an alkaloid fundamental parent, a benzophenanthridine alkaloid and an alkaloid antibiotic.
Chelidonine has been reported in Stylophorum lasiocarpum, Chelidonium majus, and other organisms with data available. Chelidonine is an isolate of Papaveraceae with acetylcholinesterase and butyrylcholinesterase inhibitory activity. See also: Chelidonium majus flowering top (part of); Chelidonine (+) (annotation moved to). |
Molecular Formula |
C20H19NO5
|
---|---|
Molecular Weight |
353.37
|
Exact Mass |
353.126
|
CAS # |
476-32-4
|
Related CAS # |
4312-31-6 (hydrochloride);63937-19-9 (sulfate)
|
PubChem CID |
197810
|
Appearance |
White to off-white solid powder
|
Density |
1.4±0.1 g/cm3
|
Boiling Point |
507.4±50.0 °C at 760 mmHg
|
Melting Point |
135-140ºC
|
Flash Point |
260.7±30.1 °C
|
Vapour Pressure |
0.0±1.4 mmHg at 25°C
|
Index of Refraction |
1.667
|
LogP |
2.75
|
Hydrogen Bond Donor Count |
1
|
Hydrogen Bond Acceptor Count |
6
|
Rotatable Bond Count |
0
|
Heavy Atom Count |
26
|
Complexity |
560
|
Defined Atom Stereocenter Count |
3
|
SMILES |
CN1CC2=C(C=CC3=C2OCO3)[C@@H]4[C@H]1C5=CC6=C(C=C5C[C@@H]4O)OCO6
|
InChi Key |
GHKISGDRQRSCII-ZOCIIQOWSA-N
|
InChi Code |
InChI=1S/C20H19NO5/c1-21-7-13-11(2-3-15-20(13)26-9-23-15)18-14(22)4-10-5-16-17(25-8-24-16)6-12(10)19(18)21/h2-3,5-6,14,18-19,22H,4,7-9H2,1H3/t14-,18-,19+/m0/s1
|
Chemical Name |
(1S,12S,13R)-24-methyl-5,7,18,20-tetraoxa-24-azahexacyclo[11.11.0.02,10.04,8.014,22.017,21]tetracosa-2,4(8),9,14(22),15,17(21)-hexaen-12-ol
|
Synonyms |
Chelidonine Khelidonin Stylophorin Stylophorin
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
DMSO : ~100 mg/mL (~282.99 mM)
|
---|---|
Solubility (In Vivo) |
Solubility in Formulation 1: ≥ 2.5 mg/mL (7.07 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL. Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution. Solubility in Formulation 2: ≥ 2.5 mg/mL (7.07 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution. For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly. Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution. View More
Solubility in Formulation 3: ≥ 2.5 mg/mL (7.07 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution. |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 2.8299 mL | 14.1495 mL | 28.2990 mL | |
5 mM | 0.5660 mL | 2.8299 mL | 5.6598 mL | |
10 mM | 0.2830 mL | 1.4149 mL | 2.8299 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.
Chelidonine induces apoptosis in human glioblastoma, T98G cell line. (a) The chemical structure of chelidonine. (b) Human glioblastoma (T98G), lung cancer (A549), breast cancer (MCF7, MDA-MB-231), colon cancer (SW620) cell lines and noncancer (human embryonic kidney cell: HEK293, human umbilical vein endothelial cell: HUVEC, human fibroblast: CCD-25Sk) were treated with chelidonine (1.0 μM) for 24 h, and a dimethylthiazolyl-carboxymethoxyphenyl-sulfophenyl-tetrazolium (MTS) assay was used to determine cell viability. (c) T98G cells were treated with the indicated concentration of chelidonine for 24 h. The size of the sub G1/0 population of T98G cells, indicative of cell death, was determined by PI staining and flow cytometry analysis. (d) Whole T98G cell lysates were subjected to western blot analysis with the indicated antibodies. Cf; cleaved fragment. (e) Mitochondrial depolarization. Cells were stained with MitoTracker Red CMXRos and then analyzed using flow cytometry. Each experimental result represents the mean ± SEM of three independent experiments. ∗∗∗, p < 0.001, ∗∗, p < 0.01, ∗, p < 0.05 by t-tests.[1].Lee YK, et al. Chelidonine Induces Caspase-Dependent and Caspase-Independent Cell Death through G2/M Arrest in the T98G Human Glioblastoma Cell Line. Evid Based Complement Alternat Med. 2019 May 26;2019:6318179. td> |
Chelidonine induces caspase-dependent and -independent apoptosis in T98G cells. (a) Cells were pretreated with 50 μM Z-VAD-FMK for 1 h, followed by treatment with 0.6 μM chelidonine for 24 h. (b) Whole T98G cell lysates were subjected to western blot analysis with the indicated antibodies. The arrows indicate bands corresponding to cleaved caspase-9. Arrow: cleaved caspase-9. (c) T98G cells were synchronized by double thymidine inhibition, washed, and then incubated with 0.6 μM chelidonine for indicated periods of time after synchronization. They were then immunostained for AIF (red) and DNA (DAPI; blue). Images were captured using confocal laser scanning microscopy. Magnification, 600X. Scale bar, 10 μm.[1].Lee YK, et al. Chelidonine Induces Caspase-Dependent and Caspase-Independent Cell Death through G2/M Arrest in the T98G Human Glioblastoma Cell Line. Evid Based Complement Alternat Med. 2019 May 26;2019:6318179. td> |
Chelidonine induces G 2/M arrest in T98G cells. T98G cells were seeded in six-well plates and incubated with the indicated concentration of chelidonine for 24 h (a). They were then stained with propidium iodide and analyzed with flow cytometry. (b) The numbers of cells in G2/M phase of cell cycle were analyzed using ModFit LT™. (c) T98G cells were treated with 2 mM thymidine for 12 h, the thymidine was removed by washing with PBS (3 times), and fresh media was added to the culture plates for 12 h, after which they were retreated with 2 mM thymidine for 12 h. The G1/0/ arrested cells were then released by PBS washing and the addition of fresh medium containing 0.6 μM chelidonine or DMSO for the indicated periods of time. The cell cycle was analyzed at the indicated time points by PI staining and flow cytometry. The data show the percentages of cells in and G2/M phase (c) and sub-G1/0 (d). Error bars represent the standard deviation. The data were analyzed using t-test. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.[1].Lee YK, et al. Chelidonine Induces Caspase-Dependent and Caspase-Independent Cell Death through G2/M Arrest in the T98G Human Glioblastoma Cell Line. Evid Based Complement Alternat Med. 2019 May 26;2019:6318179. td> |