yingweiwo

Chelidonine

Alias: Chelidonine Khelidonin Stylophorin Stylophorin
Cat No.:V5661 Purity: ≥98%
Chelidonine is an isoquinoline alkaloid found in celandine.
Chelidonine
Chelidonine Chemical Structure CAS No.: 476-32-4
Product category: AChR Receptor
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
25mg
50mg
100mg
250mg
Other Sizes

Other Forms of Chelidonine:

  • Chelidonine hydrochloride
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
Chelidonine is an isoquinoline alkaloid found in celandine. Chelidonine can cause G2/M arrest of the cell cycle, induce caspase-dependent and -independent apoptosis, and can also prevent the cell cycle progression of Dugesia japonica stem cells. Chelidonine has cytotoxic activity against melanocytoma. Has anti-tumor and anti-viral activity.
Biological Activity I Assay Protocols (From Reference)
ln Vitro
Chelidonine (5, 10 and 20 μM; 3–4 days) resulted in lesions and ventral curling in Dugesia japonica; at 20 μM, Djmcm2 expression was greatly reduced, but at 5 and 10 μM, no reduction was seen; also, it blocked stem cells' ability to advance through the cell cycle [2]. Melanoma cell lines are susceptible to the cytotoxic effects of chelidonine (0–3 μg/mL; 48 hours) [3]. In A-375 cells, the mitochondrial membrane potential (MMP) was 50% lower at 1 and 1.5 μg/mL and at 3 μg/mL of chelidonine (1, 2, and 3 μg/mL; 24 hours). 62% decrease [3].
Cell Assay
Cytotoxicity assay [3]
Cell Types: A-375, A-375-p53DD and A-375-p53sh
Tested Concentrations: 0-3 μg/mL
Incubation Duration: 48 hrs (hours)
Experimental Results: demonstrated cytotoxic activity against melanoma cell lines, The values were 0.910±0.017 μg/ml, 0.634±0.009 μg/ml and 0.772±0.045 μg/ml in A-375, A-375-p53DD and A-375-p53sh, respectively.
ADME/Pharmacokinetics
Metabolism / Metabolites
Paraoxonase (PON1) is a key enzyme in the metabolism of organophosphates. PON1 can inactivate some organophosphates through hydrolysis. PON1 hydrolyzes the active metabolites in several organophosphates insecticides as well as, nerve agents such as soman, sarin, and VX. The presence of PON1 polymorphisms causes there to be different enzyme levels and catalytic efficiency of this esterase, which in turn suggests that different individuals may be more susceptible to the toxic effect of OP exposure.
Toxicity/Toxicokinetics
Toxicity Summary
Chelidonine is a cholinesterase or acetylcholinesterase (AChE) inhibitor. A cholinesterase inhibitor (or 'anticholinesterase') suppresses the action of acetylcholinesterase. Because of its essential function, chemicals that interfere with the action of acetylcholinesterase are potent neurotoxins, causing excessive salivation and eye-watering in low doses, followed by muscle spasms and ultimately death. Nerve gases and many substances used in insecticides have been shown to act by binding a serine in the active site of acetylcholine esterase, inhibiting the enzyme completely. Acetylcholine esterase breaks down the neurotransmitter acetylcholine, which is released at nerve and muscle junctions, in order to allow the muscle or organ to relax. The result of acetylcholine esterase inhibition is that acetylcholine builds up and continues to act so that any nerve impulses are continually transmitted and muscle contractions do not stop. Among the most common acetylcholinesterase inhibitors are phosphorus-based compounds, which are designed to bind to the active site of the enzyme. The structural requirements are a phosphorus atom bearing two lipophilic groups, a leaving group (such as a halide or thiocyanate), and a terminal oxygen.
Chelidonine has an acetylcholinesterase and butyrylcholinesterase inhibitory activity. (Wikipedia)
Generally, some of the alkaloid extract from Chelidonium majus, which contains protoberberine and benzo[c]phenanthridine alkaloids such as chelidonine, intercalate DNA, and in consequence inhibit DNA and RNA polymerase, topoisomerase, telomerase, and even ribosomal protein biosynthesis or bind to tubulin/microtubules, thus acting as spindle poisons. Chelidonine has the ability to overcome multidrug resistance (MDR) of different cancer cell lines through interaction with ABC-transporters, CYP3A4 and GST, by induction of apoptosis, and cytotoxic effects. It induced apoptosis in MDR cells which was accompanied by an activation of caspase-3, -8,-6/9, and phosphatidyl serine (PS) exposure. (A15442) Chelidonine is known to cause mitotic arrest and to interact weakly with tubulin. Chelidonine has proven to be a weak inhibitor of cell growth in two normal (monkey kidney and Hs27), two transformed (Vero and Graham 293) and two malignant (WHCO5 and HeLa) cell lines. (A15443)
References

[1]. Chelidonine Induces Caspase-Dependent and Caspase-Independent Cell Death through G2/M Arrest in the T98G Human Glioblastoma Cell Line. Evid Based Complement Alternat Med. 2019 May 26;2019:6318179.

[2]. The in vivo effect of chelidonine on the stem cell system of planarians. Eur J Pharmacol. 2012 Jul 5;686(1-3):1-7.

[3]. Benzo[c]phenanthridine alkaloids exhibit strong anti-proliferative activity in malignant melanoma cells regardless of their p53 status. J Dermatol Sci. 2011 Apr;62(1):22-35.

Additional Infomation
Chelidonine is an alkaloid fundamental parent, a benzophenanthridine alkaloid and an alkaloid antibiotic.
Chelidonine has been reported in Stylophorum lasiocarpum, Chelidonium majus, and other organisms with data available.
Chelidonine is an isolate of Papaveraceae with acetylcholinesterase and butyrylcholinesterase inhibitory activity.
See also: Chelidonium majus flowering top (part of); Chelidonine (+) (annotation moved to).
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C20H19NO5
Molecular Weight
353.37
Exact Mass
353.126
CAS #
476-32-4
Related CAS #
4312-31-6 (hydrochloride);63937-19-9 (sulfate)
PubChem CID
197810
Appearance
White to off-white solid powder
Density
1.4±0.1 g/cm3
Boiling Point
507.4±50.0 °C at 760 mmHg
Melting Point
135-140ºC
Flash Point
260.7±30.1 °C
Vapour Pressure
0.0±1.4 mmHg at 25°C
Index of Refraction
1.667
LogP
2.75
Hydrogen Bond Donor Count
1
Hydrogen Bond Acceptor Count
6
Rotatable Bond Count
0
Heavy Atom Count
26
Complexity
560
Defined Atom Stereocenter Count
3
SMILES
CN1CC2=C(C=CC3=C2OCO3)[C@@H]4[C@H]1C5=CC6=C(C=C5C[C@@H]4O)OCO6
InChi Key
GHKISGDRQRSCII-ZOCIIQOWSA-N
InChi Code
InChI=1S/C20H19NO5/c1-21-7-13-11(2-3-15-20(13)26-9-23-15)18-14(22)4-10-5-16-17(25-8-24-16)6-12(10)19(18)21/h2-3,5-6,14,18-19,22H,4,7-9H2,1H3/t14-,18-,19+/m0/s1
Chemical Name
(1S,12S,13R)-24-methyl-5,7,18,20-tetraoxa-24-azahexacyclo[11.11.0.02,10.04,8.014,22.017,21]tetracosa-2,4(8),9,14(22),15,17(21)-hexaen-12-ol
Synonyms
Chelidonine Khelidonin Stylophorin Stylophorin
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~100 mg/mL (~282.99 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (7.07 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (7.07 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (7.07 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.8299 mL 14.1495 mL 28.2990 mL
5 mM 0.5660 mL 2.8299 mL 5.6598 mL
10 mM 0.2830 mL 1.4149 mL 2.8299 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Biological Data
  • Chelidonine induces apoptosis in human glioblastoma, T98G cell line. (a) The chemical structure of chelidonine. (b) Human glioblastoma (T98G), lung cancer (A549), breast cancer (MCF7, MDA-MB-231), colon cancer (SW620) cell lines and noncancer (human embryonic kidney cell: HEK293, human umbilical vein endothelial cell: HUVEC, human fibroblast: CCD-25Sk) were treated with chelidonine (1.0 μM) for 24 h, and a dimethylthiazolyl-carboxymethoxyphenyl-sulfophenyl-tetrazolium (MTS) assay was used to determine cell viability. (c) T98G cells were treated with the indicated concentration of chelidonine for 24 h. The size of the sub G1/0 population of T98G cells, indicative of cell death, was determined by PI staining and flow cytometry analysis. (d) Whole T98G cell lysates were subjected to western blot analysis with the indicated antibodies. Cf; cleaved fragment. (e) Mitochondrial depolarization. Cells were stained with MitoTracker Red CMXRos and then analyzed using flow cytometry. Each experimental result represents the mean ± SEM of three independent experiments. ∗∗∗, p < 0.001, ∗∗, p < 0.01, ∗, p < 0.05 by t-tests.[1].Lee YK, et al. Chelidonine Induces Caspase-Dependent and Caspase-Independent Cell Death through G2/M Arrest in the T98G Human Glioblastoma Cell Line. Evid Based Complement Alternat Med. 2019 May 26;2019:6318179.
  • Chelidonine induces caspase-dependent and -independent apoptosis in T98G cells. (a) Cells were pretreated with 50 μM Z-VAD-FMK for 1 h, followed by treatment with 0.6 μM chelidonine for 24 h. (b) Whole T98G cell lysates were subjected to western blot analysis with the indicated antibodies. The arrows indicate bands corresponding to cleaved caspase-9. Arrow: cleaved caspase-9. (c) T98G cells were synchronized by double thymidine inhibition, washed, and then incubated with 0.6 μM chelidonine for indicated periods of time after synchronization. They were then immunostained for AIF (red) and DNA (DAPI; blue). Images were captured using confocal laser scanning microscopy. Magnification, 600X. Scale bar, 10 μm.[1].Lee YK, et al. Chelidonine Induces Caspase-Dependent and Caspase-Independent Cell Death through G2/M Arrest in the T98G Human Glioblastoma Cell Line. Evid Based Complement Alternat Med. 2019 May 26;2019:6318179.
  • Chelidonine induces G 2/M arrest in T98G cells. T98G cells were seeded in six-well plates and incubated with the indicated concentration of chelidonine for 24 h (a). They were then stained with propidium iodide and analyzed with flow cytometry. (b) The numbers of cells in G2/M phase of cell cycle were analyzed using ModFit LT™. (c) T98G cells were treated with 2 mM thymidine for 12 h, the thymidine was removed by washing with PBS (3 times), and fresh media was added to the culture plates for 12 h, after which they were retreated with 2 mM thymidine for 12 h. The G1/0/ arrested cells were then released by PBS washing and the addition of fresh medium containing 0.6 μM chelidonine or DMSO for the indicated periods of time. The cell cycle was analyzed at the indicated time points by PI staining and flow cytometry. The data show the percentages of cells in and G2/M phase (c) and sub-G1/0 (d). Error bars represent the standard deviation. The data were analyzed using t-test. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.[1].Lee YK, et al. Chelidonine Induces Caspase-Dependent and Caspase-Independent Cell Death through G2/M Arrest in the T98G Human Glioblastoma Cell Line. Evid Based Complement Alternat Med. 2019 May 26;2019:6318179.
Contact Us