Size | Price | Stock | Qty |
---|---|---|---|
500mg |
|
||
1g |
|
||
5g |
|
||
Other Sizes |
|
ln Vitro |
Inhibiting cell growth and causing cell cycle arrest in the G2/M phase, ciprofloxacin (Bay-09867) monoHClide (5-50 μg/mL; 0-24 hours; tenocytes) is used to treat infections [1]. Yersinia pestis and Bacillus anthracis are effectively inhibited by ciprofloxacin (Bay-09867) monoHClide, demonstrating MIC90 values of 0.03 μg/mL and 0.12 μg/mL, respectively [2].
|
---|---|
ln Vivo |
In a mouse model of pneumonic plague, ciprofloxacin (Bay-09867) monohydrochloride (30 mg/kg; i.p.; 24 hours; BALB/c mice) is protective against Y. pestis [3]. By decreasing LOX levels and raising MMP levels and activity, ciprofloxacin (Bay-09867) monohydrochloride (100 mg/kg; ir; daily for 4 weeks; C57BL/6J mice) accelerates aortic root expansion and raises the risk of aortic dissection and rupture of the aorta wall [4]. Ciprofloxacin (Bay-09867) monoHClide (100 mg/kg; ir; daily for 4 weeks; C57BL/6J mice) causes mitochondrial dysfunction, activation of cytoplasmic DNA sensor signaling, and DNA damage and release into the cytoplasm. Apoptosis and necroptosis in the aorta wall are increased by ciprofloxacin lactate [4].
|
Cell Assay |
Cell Viability Assay [1]
Cell Types: Tenocytes Tested Concentrations: 5, 10, 20 and 50 μg/mL Incubation Duration: 24 hrs (hours) Experimental Results: diminished cellularity of tenocytes. Cell cycle analysis [1] Cell Types: Tenocytes Tested Concentrations: 50 μg/mL Incubation Duration: 24 hrs (hours) Experimental Results: The cell cycle was arrested in the G2/M phase and inhibited cell division of tenocytes. Western Blot Analysis [1] Cell Types: tenocytes Tested Concentrations: 50 μg/mL Incubation Duration: 0, 6, 12, 17 and 24 hrs (hours) Experimental Results: Down-regulated the expression of CDK-1 and cyclin B protein and mRNA. Upregulates the expression of PLK-1 protein. |
Animal Protocol |
Animal/Disease Models: balb/c (Bagg ALBino) mouse [3]
Doses: 30 mg/kg Route of Administration: intraperitoneal (ip) injection; 24-hour Experimental Results: diminished the bacterial load in the lungs of the plague mouse model. Animal/Disease Models: C57BL/6J mice [4] Doses: 100 mg/kg Route of Administration: po (oral gavage); one time/day for 4 weeks Experimental Results: The aorta was destroyed, accompanied by diminished LOX expression and MMP expression and activity Increase. Animal/Disease Models: C57BL/6J mice [4] Doses: 100 mg/kg Route of Administration: po (oral gavage); one time/day for 4 weeks Experimental Results: Causes mitochondrial DNA and nuclear DNA damage, leading to mitochondrial dysfunction and ROS production. Increased aortic wall cell apoptosis and necroptosis. |
ADME/Pharmacokinetics |
Absorption, Distribution and Excretion
A 250mg oral dose of ciprofloxacin reaches an average maximum concentration of 0.94mg/L in 0.81 hours with an average area under the curve of 1.013L/h\*kg. The FDA reports an oral bioavailability of 70-80% while other studies report it to be approximately 60%. An early review of ciprofloxacin reported an oral bioavailability of 64-85% but recommends 70% for all practical uses. 27% of an oral dose was recovered unmetabolized in urine compared to 46% of an intravenous dose. Collection of radiolabelled ciprofloxacin resulted in 45% recovery in urine and 62% recovery in feces. Cirpofloxacin follws a 3 compartment distribution model with a central compartment volume of 0.161L/kg and a total volume of distribution of 2.00-3.04L/kg. The average renal clearance after a 250mg oral dose is 5.08mL/min\*kg. Following a 100mg intravenous dose, the average total clearance is 9.62mL/min\*kg, average renal clearance is 4.42mL/min\*kg, and average non renal clearance is 5.21mL/min\*kg. Based on population pharmacokinetics, bioavailability of ciprofloxacin oral suspension in children is approximately 60%. Following a single oral dose of 10 mg/kg of ciprofloxacin given as the oral suspension to children 4 months to 7 years of age, the mean peak plasma concentration was 2.4 ug/mL. There was no apparent age dependence and no increase in peak plasma concentrations following multiple doses. When extended-release tablets containing ciprofloxacin hydrochloride (ProQuin XR) are administered with food, approximately 87% of the drug is gradually released from the tablet over a 6- hour period. When administered following a meal, peak plasma concentrations are attained approximately 4.5-7 hours after the dose. Bioavailability is substantially lower if ProQuin XR tablets are given while fasting. In healthy adults receiving ProQuin XR extended-release tablets in a dosage of 500 mg once daily given following a standardized meal, peak plasma concentrations at steady state (day 3) average 0.82 mcg/mL and are attained 6.1 hours after the dose. /Ciprofloxacin hydrochloride/ Following oral administration of extended-release tablets containing ciprofloxacin hydrochloride and base (Cipro XR), peak plasma concentrations of ciprofloxacin are attained within 1-4 hours. Cipro XR tablets contain approximately 35% of the dose within an immediate-release component; the remaining 65% of the dose is contained in a slow-release matrix. Oral administration of ciprofloxacin 500 mg daily as Cipro XR extended-release tablets or 250 mg twice daily as conventional tablets results in steady-state mean peak plasma concentrations of 1.59 or 1.14 ug/mL, respectively; however, the area under the concentration-time curve (AUC) is similar with both regimens. /Ciprofloxacin hydrochloride/ Peak serum concentrations of ciprofloxacin and AUCs of the drug are slightly higher in geriatric patients than in younger adults; this may occur because of increased bioavailability, reduced volume of distribution, and/or reduced renal clearance in these patients. Single-dose oral studies using ciprofloxacin conventional tablets and single- and multiple-dose IV studies indicate that, compared with younger adults, peak plasma concentrations are 16-40% higher, mean AUC is approximately 30% higher, and elimination half-life is prolonged approximately 20% in individuals older than 65 years of age. These differences can be at least partially attributed to decreased renal clearance in this age group and are not clinically important. For more Absorption, Distribution and Excretion (Complete) data for CIPROFLOXACIN (18 total), please visit the HSDB record page. Metabolism / Metabolites Ciprofloxacin is primarily metabolized by CYP1A2. The primary metabolites oxociprofloxacin and sulociprofloxacin make up 3-8% of the total dose each. Ciprofloxacin is also converted to the minor metabolites desethylene ciprofloxacin and formylciprofloxacin. These 4 metabolites account for 15% of a total oral dose. There is a lack of available data on the enzymes and types of reactions involved in forming these metabolites. The drug is partially metabolized in the liver by modification of the piperazinyl group to at least 4 metabolites. These metabolites, which have been identified as desethyleneciprofloxacin (M1), sulfociprofloxacin (M2), oxociprofloxacin (M3), and N-formylciprofloxacin (M4), have microbiologic activity that is less than that of the parent drug but may be similar to or greater than that of some other quinolones (e.g., M3 and M4 are comparable to norfloxacin for certain organisms). Hepatic. Four metabolites have been identified in human urine which together account for approximately 15% of an oral dose. The metabolites have antimicrobial activity, but are less active than unchanged ciprofloxacin. Route of Elimination: Approximately 40 to 50% of an orally administered dose is excreted in the urine as unchanged drug. Half Life: 4 hours Biological Half-Life The average half life following a 250mg oral dose was 4.71 hours and 3.65 hours following a 100mg intravenous dose. Generally the half life is reported as 4 hours. The serum elimination half-life of ciprofloxacin in adults with normal renal function is 3-7 hours. Following IV administration in healthy adults, the distribution half-life of ciprofloxacin averages 0.18-0.37 hours and the elimination half-life averages 3-4.8 hours. The elimination half-life of the drug is slightly longer in geriatric adults than in younger adults, and ranges from 3.3-6.8 hours in adults 60-91 years of age with renal function normal for their age. Based on population pharmacokinetic analysis of pediatric patients with various infections, the predicted mean half-life of ciprofloxacin in children is approximately 4-5 hours. In patients with impaired renal function, serum concentrations of ciprofloxacin are higher and the half-life prolonged. In adults with creatinine clearances of 30 mL/minute or less, half-life of the drug ranges from 4.4-12.6 hours. t1/2 for ciprofloxacin- normal: 4 (hr), anephric: 8.5 (hr) /from table/ |
Toxicity/Toxicokinetics |
Toxicity Summary
The bactericidal action of ciprofloxacin results from inhibition of the enzymes topoisomerase II (DNA gyrase) and topoisomerase IV, which are required for bacterial DNA replication, transcription, repair, strand supercoiling repair, and recombination. Interactions Serious and fatal reactions have been reported in patients receiving concurrent administration of ciprofloxacin and theophylline. These reactions have included cardiac arrest, seizure, status epilepticus, and respiratory failure. Although similar serious adverse effects have been reported in patients receiving theophylline alone, the possibility that these reactions may be potentiated by ciprofloxacin cannot be eliminated. If concomitant use cannot be avoided, serum levels of theophylline should be monitored and dosage adjustments made as appropriate. ... The effects of aluminum hydroxide ... and calcium carbonate ... on the bioavailability of ciprofloxacin /was determined in/ ... a 3 way randomized, crossover study was concluded in 12 healthy male volunteers (ages 21-45 yr) that consisted of 3 treatments: 750 mg ciprofloxacin alone, 750 mg ciprofloxacin with 3.4 g calcium carbonate or 1.8 g aluminum hydroxide admin 5 min before ciprofloxacin. The relative bioavailability of ciprofloxacin was reduced to 60% and 15% of control values when given with calcium carbonate and aluminum hydroxide, respectively. ... It was concluded that antacids containing either aluminum or calcium should not be given concurrently with ciprofloxacin. Ciprofloxacin, given to a patient successfully treated with methadone for more than 6 yrs, caused profound sedation, confusion, & respiratory depression. We suggest that this was caused by ciprofloxacin inhibition of CYP1A2 & CYP3A4 activity, 2 of the cytochrome p450 isozymes involved in the metab of methadone. Synergism does not occur in vitro when ciprofloxacin is used in conjunction with vancomycin against Staphylococcus epidermidis, S. aureus (including oxacillin-resistant S. aureus), Corynebacterium, or Listeria monocytogenes. For more Interactions (Complete) data for CIPROFLOXACIN (35 total), please visit the HSDB record page. |
References |
|
Additional Infomation |
Therapeutic Uses
Anti-Infective Agents; Nucleic Acid Synthesis Inhibitors Ciprofloxacin (IV, conventional tablets, oral suspension) is used in adults for the treatment of bone and joint infections, including osteomyelitis, caused by susceptible E. cloacae, ... Ps. aeruginosa, or S. marcescens. ... /Included in US product label/ Ciprofloxacin (IV, conventional tablets, oral suspension) is used in adults for the treatment of bone and joint infections, including osteomyelitis, caused by susceptible E. aerogenes, ... E. coli, K. pneumoniae, M. morganii, P. mirabilis, ... . The drug also has been used in adults for the treatment of bone and joint infections caused by susceptible S. aureus, S. epidermidis, other coagulase-negative staphylococci, or Enterococcus faecalis (formerly S. faecalis), but other anti-infectives generally are preferred for these infections. Although resistance to ciprofloxacin has been reported in some strains of oxacillin-resistant S. aureus, oral ciprofloxacin may be a useful alternative to parenteral anti-infectives for the treatment of infections caused by susceptible oxacillin-resistant staphylococci. /NOT included in US product label/ Although only limited experience is available to date, ciprofloxacin is recommended by the American Heart Association (AHA) and Infectious Diseases Society of America (IDSA) as an alternative agent for the treatment of native or prosthetic valve endocarditis caused by fastidious gram-negative bacilli known as the HACEK group (Actinobacillus actinomycetemcomitans, Cardiobacterium hominis, Eikenella corrodens, Haemophilus aphrophilus, H. influenzae, H. parainfluenzae, H. paraphrophilus, Kingella denitrificans, K. kingae). /NOT included in US product label/ For more Therapeutic Uses (Complete) data for CIPROFLOXACIN (53 total), please visit the HSDB record page. Drug Warnings /BOXED WARNING/ WARNING: Fluoroquinolones, including Cipro, are associated with an increased risk of tendinitis and tendon rupture in all ages. This risk is further increased in older patients usually over 60 years of age, in patients taking corticosteroid drugs, and in patients with kidney, heart or lung transplants. /BOXED WARNING/ WARNING: Fluoroquinolones, including Cipro, may exacerbate muscle weakness in persons with myasthenia gravis. Avoid Cipro in patients with known history of myasthenia gravis. In 4 corneal transplantation patients treated preoperatively with ciprofloxacin ophthalmic drops, microprecipitates associated with damaged corneal epithelium were noted in 2 patients. Another patient developed a large macroprecipitate in a corneal ulcer. All specimens were examined by electron microscopy & high-pressure liquid chromatography. The crystalline precipitates were pure ciprofloxacin. The macroprecipitate demonstrated a large zone of inhibition on agar plates seeded with a susceptible organism at 24 & 48 hr. It was bioactive & bioavailable in vitro. Serious and occasionally fatal hypersensitivity (anaphylactic) reactions, some following the first dose, have been reported in patients receiving quinolone therapy. Some reactions were accompanied by cardiovascular collapse, loss of consciousness, tingling, pharyngeal or facial edema, dyspnea, urticaria, and itching. Only a few patients had a history of hypersensitivity reactions. Serious anaphylactic reactions require immediate emergency treatment with epinephrine. Oxygen, intravenous steroids, and airway management, including intubation, should be administered as indicated. For more Drug Warnings (Complete) data for CIPROFLOXACIN (41 total), please visit the HSDB record page. Pharmacodynamics Ciprofloxacin is a second generation fluoroquinolone that is active against many Gram negative and Gram positive bacteria. It produces its action through inhibition of bacterial DNA gyrase and topoisomerase IV. Ciprofloxacin binds to bacterial DNA gyrase with 100 times the affinity of mammalian DNA gyrase. There is no cross resistance between fluoroquinolones and other classes of antibiotics, so it may be of clinical value when other antibiotics are no longer effective. Ciprofloxain and its derivatives are also being investigated for its action against malaria, cancers, and AIDS. |
Molecular Formula |
C17H19CLFN3O3
|
---|---|
Molecular Weight |
367.8025
|
Exact Mass |
367.109
|
CAS # |
93107-08-5
|
Related CAS # |
Ciprofloxacin;85721-33-1;Ciprofloxacin hydrochloride monohydrate;86393-32-0;Ciprofloxacin-d8 hydrochloride hydrate
|
PubChem CID |
2764
|
Appearance |
White to off-white solid powder
|
Boiling Point |
581.8ºC at 760 mmHg
|
Melting Point |
>300ºC
|
Flash Point |
305.6ºC
|
LogP |
2.779
|
Hydrogen Bond Donor Count |
2
|
Hydrogen Bond Acceptor Count |
7
|
Rotatable Bond Count |
3
|
Heavy Atom Count |
24
|
Complexity |
571
|
Defined Atom Stereocenter Count |
0
|
InChi Key |
MYSWGUAQZAJSOK-UHFFFAOYSA-N
|
InChi Code |
InChI=1S/C17H18FN3O3/c18-13-7-11-14(8-15(13)20-5-3-19-4-6-20)21(10-1-2-10)9-12(16(11)22)17(23)24/h7-10,19H,1-6H2,(H,23,24)
|
Chemical Name |
1-cyclopropyl-6-fluoro-4-oxo-7-piperazin-1-ylquinoline-3-carboxylic acid
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month Note: (1). Please store this product in a sealed and protected environment (e.g. under nitrogen), avoid exposure to moisture and light. (2). This product is not stable in solution, please use freshly prepared working solution for optimal results. |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
H2O : ~12.5 mg/mL (~33.99 mM)
DMSO : ~5 mg/mL (~13.59 mM) |
---|---|
Solubility (In Vivo) |
Solubility in Formulation 1: ≥ 0.5 mg/mL (1.36 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 5.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly. Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution. Solubility in Formulation 2: ≥ 0.5 mg/mL (1.36 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution. For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 5.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 2.7189 mL | 13.5943 mL | 27.1887 mL | |
5 mM | 0.5438 mL | 2.7189 mL | 5.4377 mL | |
10 mM | 0.2719 mL | 1.3594 mL | 2.7189 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.