yingweiwo

Cloxacillin

Alias: HSDB-3042Cloxacillin HSDB3042 HSDB 3042
Cat No.:V44261 Purity: ≥98%
Cloxacillin (HSDB-3042), a chlorinated derivative of Oxacillin,is a potent andorally bioactive antibacterial agent acting as a β-lactamase inhibitor with an IC50 of 0.04 µM.
Cloxacillin
Cloxacillin Chemical Structure CAS No.: 61-72-3
Product category: New3
This product is for research use only, not for human use. We do not sell to patients.
Size Price
10mg
25mg
50mg
100mg

Other Forms of Cloxacillin:

  • Cloxacillin sodium hydrate
  • Cloxacillin Sodium
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description

Cloxacillin (HSDB-3042), a chlorinated derivative of Oxacillin, is a potent and orally bioactive antibacterial agent acting as a β-lactamase inhibitor with an IC50 of 0.04 µM. Cloxacillin can suppress the S. aureus-induced inflammatory response by inhibiting the activation of MAPKs, NF-кB and NLRP3-related protein.

Biological Activity I Assay Protocols (From Reference)
ln Vitro
For S, cloxacillin (0–2048 µg/mL; 20–24 h) exhibits satisfactory antibacterial action. MIC values for aureus 8325-4 and DU1090 are both 0.125 µg/mL[1]. In vitro, cloxacillin (0.015625 μg/mL; 6 h) suppresses the hemolytic activity of Hlα, and this suppression is enhanced when combined with TZ and TZ. Additionally, cloxacillin inhibits the inflammatory response by preventing the activation of MAPKs, NF-кB, and proteins linked to NLRP3[1].
ln Vivo
Mice are protected against S by cloxacillin (1.6125 mg/kg; sc; 12-h intervals for 72 h). When combined with thioridazine and tetracycline, aureus can cause peritonitis in vivo[1]. When combined with anti-IL-15 antibodies, cloxacillin (7.5 mg/per; ip; twice daily starting on day 3) results in less severe synovitis and less bone erosion[3].
Cell Assay
Cell Viability Assay[1]
Cell Types: S. aureus 8325-4, S. aureus DU1090 (an Hlα-deleted strain)
Tested Concentrations: 0-2048 µg/mL
Incubation Duration: 20-24 h
Experimental Results: Inhibited S. aureus 8325-4 and DU1090 with MIC values both of 0.125 μg/mL.

Western Blot Analysis[1]
Cell Types: S. aureus 8325-4
Tested Concentrations: 0.015625 μg/mL (combines with Thioridazine (TZ, 0.25 μg/mL) and Tetracycline (TC, 0.03125 μg/mL)).
Incubation Duration: 6 h
Experimental Results: Inhibited the expression of Hlα and the inhibition was more pronounced when combined with TZ and TC.

Western Blot Analysis[1]
Cell Types: RAW264.7 cells (exposes to S. aureus 8325-4/DU1090 or pure Hlα)
Tested Concentrations: 0.015625 μg/mL (combines with TZ (0.25 μg/mL) and TC (0.03125 μg/mL)).
Incubation Duration: 6 h
Experimental Results: Inhibited the activation of MAPKs, NF -кB and NLRP3-related proteins thereby inhibiting the inflammatory response when combined with TC and TZ.
Animal Protocol
Animal/Disease Models: Female balb/c (Bagg ALBino) mouse (6weeks old; peritonitis model)[1].
Doses: 1.6125 mg/kg (combines with TC (3.125 mg/kg) and TZ (25 mg/kg))
Route of Administration: subcutaneous (sc) injection; 12-h intervals for 72 h.
Experimental Results: decreased the degree of inflammatory cell infiltration in the mouse lung tissue and alveolar structures tended to be normal. Dramatically decreased the pathological changes in spleen and liver tissue, as well as diminished the CFU counts of S. aureus in the peritoneal cavity.

Animal/Disease Models: Female wildtype C57BL/6 mice (8weeks old; systemic S. aureus-induced arthritis model)
Doses: 7.5 mg/per (combines with 25 µg/per anti-IL-15 antibodies)
Route of Administration: intraperitoneal (ip)injection; twice (two times) daily from day 3 (after bacterial inoculation) and stopped at day 6.
Experimental Results: demonstrated activities of reducing severe synovitis and bone erosions when combined with anti-IL-15 antibodies.
References
[1]. Zhou H, et al. The combination of cloxacillin, thioridazine and tetracycline protects mice against Staphylococcus aureus peritonitis by inhibiting α-Hemolysin-induced MAPK/NF-κB/NLRP3 activation. Int J Biol Macromol. 2022 Feb 15;198:1-10.
[2]. Bergmann B, et al. Antibiotics with Interleukin-15 Inhibition Reduce Joint Inflammation and Bone Erosions but Not Cartilage Destruction in Staphylococcus aureus-Induced Arthritis. Infect Immun. 2018 Apr 23;86(5):e00960-17.
[3]. Lupiola-Gómez PA, et al. Group 1 beta-lactamases of Aeromonas caviae and their resistance to beta-lactam antibiotics. Can J Microbiol. 2003 Mar;49(3):207-15.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C19H18CLN3O5S
Molecular Weight
435.88
CAS #
61-72-3
Related CAS #
Cloxacillin sodium monohydrate;7081-44-9;Cloxacillin sodium;642-78-4
Appearance
Typically exists as solids (or liquids in special cases) at room temperature
SMILES
O=C([C@@H](C(C)(C)S[C@]1([H])[C@@H]2NC(C3=C(C)ON=C3C4=CC=CC=C4Cl)=O)N1C2=O)O
InChi Key
LQOLIRLGBULYKD-JKIFEVAISA-N
InChi Code
InChI=1S/C19H18ClN3O5S/c1-8-11(12(22-28-8)9-6-4-5-7-10(9)20)15(24)21-13-16(25)23-14(18(26)27)19(2,3)29-17(13)23/h4-7,13-14,17H,1-3H3,(H,21,24)(H,26,27)/t13-,14+,17-/m1/s1
Chemical Name
4-Thia-1-azabicyclo(3.2.0)heptane-2-carboxylic acid, 6-(((3-(2-chlorophenyl)-5-methyl-4-isoxazolyl)carbonyl)amino)-3,3-dimethyl-7-oxo-, (2S-(2alpha,5alpha,6beta))-
Synonyms
HSDB-3042Cloxacillin HSDB3042 HSDB 3042
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.2942 mL 11.4710 mL 22.9421 mL
5 mM 0.4588 mL 2.2942 mL 4.5884 mL
10 mM 0.2294 mL 1.1471 mL 2.2942 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us