yingweiwo

Clozapine (HF 1854)

Alias: HF-1854; LX 100-129; HF 1854; LX 100129; HF1854; LX100129; Leponex; Fazaclo; 5786-21-0; Leponex; Fazaclo; CLOZARIL; Clorazil; Iprox; CLOZARIL; Clozapin; Clozaril
Cat No.:V0962 Purity: ≥98%
Clozapine(LX 100129; HF1854, LX100129; Leponex; Fazaclo; CLOZARIL; Clozapin; Clozaril) is an atypical antipsychotic drug wand a 5-HT antagonist used in the treatment of schizophrenia.
Clozapine (HF 1854)
Clozapine (HF 1854) Chemical Structure CAS No.: 5786-21-0
Product category: 5-HT Receptor
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
500mg
1g
2g
5g
10g
Other Sizes

Other Forms of Clozapine (HF 1854):

  • N-Desmethylclozapine-d8 (Norclozapine-d8; Desmethylclozapine-d8; Normethylclozapine-d8)
  • N-Desmethylclozapine-d8 hydrochloride (Norclozapine-d8 hydrochloride; Desmethylclozapine-d8 hydrochloride; Normethylclozapine-d8 hydrochloride)
  • Clozapine-d8
  • Clozapine-d4
  • Clozapine N-oxide
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Clozapine (LX 100129; HF1854, LX100129; Leponex; Fazaclo; CLOZARIL; Clozapin; Clozaril) is an atypical antipsychotic drug wand a 5-HT antagonist used in the treatment of schizophrenia. It binds to receptors for dopamine and serotonin. With its partial agonistic action at the 5-HT1A subunit of the serotonin receptor, clozapine may help alleviate symptoms of anxiety, depression, and negative cognitive symptoms linked to schizophrenia. There has also been evidence of clozapine's direct interaction with the GABAB receptor. Mice lacking the GABAB receptor show altered locomotor behavior and elevated extracellular dopamine levels similar to animal models of schizophrenia.

Biological Activity I Assay Protocols (From Reference)
Targets
5-HT2A Receptor ( Ki = 4 nM ); 5-HT6 Receptor; 5-HT7 Receptor; mAChR1 ( Ki = 9.5 nM ); mAChR4 ( Ki = 11 nM ); α2-adrenergic receptor ( Ki = 51 nM ); D2 Receptor ( Ki = 75 nM )
ln Vitro

In vitro activity: Clozapine (10, 20 mg/kg) enhances the quantity of Fos-positive neurons in the lateral septal nucleus, medial prefrontal cortex, and nucleus accumbens considerably. In rat striatum, clozapine induces zif268 but not c-fos mRNA. In the caudate-putamen, haloperidol induces c-Fos-like immunoreactivity.[2] Clozapine prefers D4 receptors over D2 receptors in terms of selectivity. Clozapine functions as a weak, mixed D1/D2 antagonist.[3] Clozapine ignificantly facilitates (300–400%) NMDA-evoked responses in a concentration-dependent manner with EC50 of 14 nM. Excitatory postsynaptic potentials (EPSPs) are triggered by clozapine but not by haloperidol. These EPSPs are inhibited by glutamate receptor antagonists, indicating that the increased release of excitatory amino acids is the cause of these EPSPs.[4] With an EC50 of 11 nM, clozapine is a full agonist at the muscarinic M4 receptor, inhibiting the accumulation of cAMP stimulated by forskolin. Across the other four muscarinic receptor subtypes, clozapine potently opposes the effects of agonist-induced responses.[5]

ln Vivo
The atypical antipsychotic clozapine exhibited an "inverted-U" shaped dose-response curve, reversing the apomorphine-induced loss of PPI at low doses but not at high doses. High doses of both SCH 23390 and clozapine decreased PPI independent of apomorphine treatment. The effects of apomorphine on baseline startle amplitude were also differentially modified by these drugs: apomorphine potentiated startle amplitude in spiperone- and raclopride-pretreated animals, but apomorphine decreased startle amplitude in animals pretreated with SCH 23390 or high doses of clozapine. Prepulse inhibition has been shown to be markedly impaired in humans with schizophrenia. Since our present findings suggest that the activation of D2 dopamine receptors is responsible for the loss of PPI in rats, overactivity of D2 dopamine receptors might also be a substrate for PPI deficits in schizophrenia. [6]
The present experiments examined some potential neuroanatomical differences in the actions of clozapine and haloperidol by comparing their effects on c-fos expression in the medial prefrontal cortex, nucleus accumbens, striatum and lateral septum. The effects of the selective dopamine receptor antagonists SCH 23390 (D1) and raclopride (D2) were also examined. Haloperidol (0.5, 1 mg/kg) and raclopride (1, 2 mg/kg) produced large increases in the number of Fos-containing neurons in the striatum and nucleus accumbens. SCH 23390 (0.5, 1 mg/kg) reduced the number of Fos-positive neurons in the nucleus accumbens and striatum, and had no effect in the other regions. Neither haloperidol nor raclopride increased the number of Fos-positive neurons in the medial prefrontal cortex. Haloperidol, but not raclopride, produced a modest increase in c-fos expression in the lateral septal nucleus. Clozapine (10, 20 mg/kg) was without effect in the striatum; however, it significantly increased the number of Fos-positive neurons in the nucleus accumbens, medial prefrontal cortex and lateral septal nucleus. Destruction of mesotelencephalic dopaminergic neurons with 6-hydroxydopamine abolished the increase in Fos expression in the nucleus accumbens and striatum produced by haloperidol and raclopride, and also blocked the clozapine-induced increase in the nucleus accumbens. However, the inductive effects of clozapine and haloperidol on c-fos expression in the lateral septal nucleus and of clozapine in the medial prefrontal cortex were not affected by the 6-hydroxydopamine lesions. These results suggest that clozapine's unique therapeutic profile may be related to its failure to induce Fos in the striatum as well as its idiosyncratic actions in the lateral septum and medial prefrontal cortex. The effects of clozapine in these latter regions do not appear to be mediated by dopaminergic mechanisms.[1]
Clozapine shows a dose-response curve with a "inverted-U" shape, reversing the rats' loss of prepulse inhibition (PPI) caused by apomorphine at low doses but not at high ones. In rats treated with apomorphine or not, clozapine reduces PPI.[6]
Enzyme Assay
Clozapine was studied in functional assays at human muscarinic M1-M5 receptors expressed in Chinese hamster ovary cells. Clozapine was a full agonist at the muscarinic M4 receptor (EC50 = 11 nM), producing inhibition of forskolin-stimulated cAMP accumulation. In contrast, clozapine potently antagonized agonist-induced responses at the other four muscarinic receptor subtypes. Selective stimulation of M4 receptors may, in part, explain the hypersalivation observed clinically with clozapine. Moreover, the unique overall muscarinic profile of clozapine may contribute to its atypical antipsychotic efficacy[4].
Cell Assay
The effects of the antipsychotic drugs haloperidol and clozapine on N-methyl-D-aspartate (NMDA) and non-NMDA receptor-mediated neurotransmission were examined and compared in pyramidal cells of the medial prefrontal cortex in rat brain slices by using the techniques of intracellular recording and single-electrode voltage-clamp. The bath administration of either haloperidol or clozapine produced a marked facilitation (300-400%) of NMDA-evoked responses in a concentration-dependent manner. The EC50 values of haloperidol and clozapine were 38 and 14 nM, respectively. At concentrations of > or =100 nM, clozapine, but not haloperidol, produced bursts of excitatory postsynaptic potentials (EPSPs), which were blocked by glutamate receptor antagonists, suggesting that these EPSPs were the result of increasing release of excitatory amino acids. Haloperidol, but not clozapine, produced a concentration-dependent inhibition of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-induced current with an EC50 value of 37 nM. Haloperidol significantly decreased the amplitude of EPSPs evoked by the electrical stimulation of the forceps minor, whereas clozapine increased the amplitude of these EPSPs. The study of current-voltage relationship indicates that clozapine preferentially potentiates NMDA receptor-mediated transmission, whereas haloperidol depresses the non-NMDA receptor-mediated response, which probably obscures its potentiating effect on NMDA receptor-mediated EPSPs[3].
Animal Protocol
25 mg/kg
Mice: Mice are treated chronically (21 days) with 25 mg/kg/day clozapine. Experiments are conducted 1, 7, 14, and 21 days after the last clozapine administration. [3H]Ketanserin binding and 5-HT2A mRNA expression are determined in mouse somatosensory cortex. Head-twitch behavior, expression of c-fos, which is induced by all 5-HT2A agonists, and expression of egr-1 and egr-2, which are LSD-like specific, are assayed
ADME/Pharmacokinetics
Absorption, Distribution and Excretion
In humans, clozapine tablets (25 mg and 100 mg) are equally bioavailable relative to a CLOZARIL solution. Following oral administration of clozapine 100 mg twice daily, the average steady-state peak plasma concentration was 319 ng/mL (range: 102 to 771 ng/mL), occurring at the average of 2.5 hours (range: 1 to 6 hours) after dosing. The average minimum concentration at steady state was 122 ng/mL (range: 41 to 343 ng/mL), after 100 mg twice daily dosing.
Approximately 50% of the administered dose is excreted in the urine and 30% in the feces.
The median volume of distribution of clozapine was calculated to be 508 L (272–1290 L).
The median clearance of clozapine is calculated to be 30.3 L/h (14.4–45.2 L/h).
Clozapine is almost completely metabolized prior to excretion and only trace amounts of unchanged drug are detected in the urine and feces. Approximately 50% of the administered dose is excreted in the urine and 30% in the feces. The demethylated, hydroxylated and N-oxide derivatives are components in both urine and feces. Pharmacological testing has shown the desmethyl metabolite to have only limited activity, while the hydroxylated and N-oxide derivatives were inactive.
In man, clozapine tablets (25 mg and 100 mg) are equally bioavailable relative to a clozapine solution. Following a dosage of 100 mg b.i.d., the average steady-state peak plasma concentration was 319 ng/mL (range: 102 to 771 ng/mL), occurring at the average of 2.5 hours (range: 1 to 6 hours) after dosing. The average minimum concentration at steady-state was 122 ng/mL (range: 41 to 343 ng/mL), after 100 mg b.i.d. dosing. Food does not appear to affect the systemic bioavailability of clozapine. Thus, clozapine may be administered with or without food. Clozapine is approximately 97% bound to serum proteins.
Clozapine is rapidly absorbed after both single and repeated oral doses, with steady-state concentrations attained within eight to ten days after beginning therapy.
Metabolism / Metabolites
Clozapine is almost completely metabolized prior to excretion, and only trace amounts of unchanged drug are detected in the urine and feces. Clozapine is a substrate for many cytochrome P450 isozymes, in particular CYP1A2, CYP2D6, and CYP3A4.The unmethylated, hydroxylated, and N-oxide derivatives are components in both urine and feces. Pharmacological testing has shown the desmethyl metabolite (norclozapine) to have only limited activity, while the hydroxylated and N-oxide derivatives were inactive.
Manic and schizophrenic patients were given neuroleptic clozapine at 300-500 mg daily and metabolites of clozapine were isolated from urine and analyzed by gas chromatography-mass spectrometry. Clozapine was converted into 2 metabolites by replacement of chlorine atom by a hydroxyl or methylsulfide group. Further metabolites were the N-demethyl deriv of 1st two metabolites. A metabolite with an oxidized piperazine ring was also found, and possibility of a metabolite with an oxidized sulfur is suggested.
/Clozapine/ is metabolized to N-oxideclozapine and N-desmethylclozapine, which have less pharmacological activity than the parent compound and are excreted in the urine and, to a lesser extent, in the feces.
Clozapine has known human metabolites that include Clozapine N-glucuronide, Clozapine-N-oxide, and N-Desmethylclozapine.
Biological Half-Life
The mean elimination half-life of clozapine after a single 75 mg dose was 8 hours (range: 4 to 12 hours), compared to a mean elimination half-life of 12 hours (range: 4 to 66 hours), after achieving a steady state with 100 mg twice daily dosing. A comparison of single-dose and multiple-dose administration of clozapine demonstrated that the elimination half-life increased significantly after multiple dosing relative to that after single-dose administration, suggesting the possibility of concentration-dependent pharmacokinetics.
The mean elimination half-life of clozapine after a single 75 mg dose was 8 hours (range: 4 to 12 hours), compared to a mean elimination half-life, after achieving steady-state with 100 mg b.i.d. dosing, of 12 hours (range: 4 to 66 hours).
Toxicity/Toxicokinetics
Toxicity Summary
IDENTIFICATION AND USE: Clozapine has been shown to be an effective, relatively rapid-acting, broad-spectrum antipsychotic agent in both uncontrolled and controlled studies of patients with schizophrenia.Clozapine has been used in a limited number of patients with advanced, idiopathic parkinsonian syndrome for the management of dopaminomimetic psychosis associated with antiparkinsonian drug therapy, but adverse effects such as sedation, confusion, and increased parkinsonian manifestations may limit the benefit of clozapine therapy in these patients. Clozapine is used to reduce the risk of recurrent suicidal behavior in patients with schizophrenia or schizoaffective disorder who are judged to be at chronic risk for such behavior, based on history and recent clinical state. Although the safety and efficacy of clozapine in children and adolescents younger than 16 years of age have not been established, the drug has been successfully used for the management of childhood-onset schizophrenia in a limited number of treatment-resistant children and adolescents. Clozapine is used for the symptomatic management of schizophrenia in severely ill patients whose disease fails to respond adequately to other antipsychotic therapy. HUMAN EXPOSURE AND TOXICITY: The most frequent adverse effects of clozapine involve the central and autonomic nervous systems (e.g., drowsiness or sedation, hypersalivation) and the cardiovascular system (e.g., tachycardia, hypotension). While the frequency and severity of some adverse effects (e.g., extrapyramidal reactions, tardive dyskinesia) appear to be less with clozapine than with other antipsychotic agents, other potentially serious adverse effects (e.g., agranulocytosis, seizures) may occur more frequently with clozapine therapy, and the potential risks and benefits should be evaluated carefully whenever therapy with the drug is considered. Although it has been suggested that a local genetic or environmental factor or factors may have been involved in the Finnish cases, the existence of such a factor has not been documented. During a 2 month period in Finland there were 18 reports of severe blood disorders (9 fatal) associated with clozapine. Agranulocytosis accounted for 8 of the deaths and leukemia probably for the ninth. Experience in 22 other countries outside Finland where clozapine had been marketed indicated an incidence of agranulocytosis of 0.3 per 1000 compared with an incidence almost 20 times as high in Finland and with 0.1 to 0.8 per 1000 for other tricyclic neuroleptics. patients who received flexible dosages of clozapine (mean dosage: 274.2 mg daily) for approximately 2 years had a 26% reduction in their risk for suicide attempts or hospitalization to prevent suicide compared with those who received flexible dosages of olanzapine (mean dosage: 16.6 mg daily); the treatment-resistant status of patients was not predictive of response to clozapine or olanzapine. ANIMAL STUDIES: Repeated oral administration to rats (6 months) and to dogs (3 months) decreased wt gain with doses of 20 mg/kg or more in rats and of 10 mg/kg or more in dogs. Hepatic hypertrophy, which was not strictly dose-dependent, was not associated with either histological changes or changes in blood chemistry and was completely reversible after discontinuation of treatment. No toxic signs were observed in rats or in dogs. Clozapine in daily oral doses of 20 or 40 mg/kg to rats and rabbits had no teratogenic effects and no influence on the fertility of male and female rats. At 40 mg/kg, however, clozapine inhibited growth of suckling young of treated mothers. Fertility of F1 treated mothers was normal and development of F2 showed no abnormalities. Clozapine hydrochloride inhibited conditioned avoidance behavior in rats, also inhibited writhing syndrome induced by phenylbenzoquinone in mice, and decreased body temp. Clozapine hydrochloride antagonized tremor and lacrimation induced by oxotremorine in mice, decreased the acute toxicity of physostigmine and 5-hydroxyindol acetate level in brain.
Non-Human Toxicity Values
LD50 Rat iv 41.6 mg/kg
LD50 Rat sc 240 mg/kg
LD50 Rat im 210 mg/kg
LD50 Rat oral 251 mg/kg
References

[1]. Neuroscience . 1992;46(2):315-28.

[2]. Proc Natl Acad Sci U S A . 1992 May 15;89(10):4270-4.

[3]. Neuropsychopharmacology . 1995 Nov;13(3):177-213.

[4]. J Pharmacol Exp Ther . 1997 Oct;283(1):226-34.

[5]. Eur J Pharmacol . 1994 Nov 15;269(3):R1-2.

[6]. J Pharmacol Exp Ther . 1991 Feb;256(2):530-6.

Additional Infomation
Therapeutic Uses
Antipsychotic Agents; GABA Antagonists; Serotonin Antagonists
Clozapine tablets are indicated for the management of severely ill schizophrenic patients who fail to respond adequately to standard drug treatment for schizophrenia. Because of the significant risk of agranulocytosis and seizure associated with its use, clozapine tablets should be used only in patients who have failed to respond adequately to treatment with appropriate courses of standard drug treatments for schizophrenia, either because of insufficient effectiveness or the inability to achieve an effective dose due to intolerable adverse effects from those drugs.
Clozapine has been used in a limited number of patients with advanced, idiopathic parkinsonian syndrome for the management of dopaminomimetic psychosis associated with antiparkinsonian drug therapy, but adverse effects such as sedation, confusion, and increased parkinsonian manifestations may limit the benefit of clozapine therapy in these patients. Attempts to relieve antiparkinsonian drug-induced delusions, paranoia, and hallucinations by reduction of antiparkinsonian drug dosage or administration of typical antipsychotic agents often aggravate parkinsonian symptoms. Limited data suggest that administration of clozapine in dosages of 6.25-400 mg daily can improve psychotic symptoms within a few days, reportedly without exacerbating parkinsonian manifestations. However, in a controlled study in a limited number of patients receiving clozapine dosages up to 250 mg daily, exacerbation of parkinsonian manifestations and development of delirium occurred frequently despite prevention of antiparkinsonian drug-induced deterioration of psychosis;88 it has been suggested that rapid clozapine dosage escalation may have contributed to the observed negative effect on parkinsonian manifestations and delirium.
Clozapine is used to reduce the risk of recurrent suicidal behavior in patients with schizophrenia or schizoaffective disorder who are judged to be at chronic risk for such behavior, based on history and recent clinical state. Efficacy of clozapine for this indication has been established in a multicenter, randomized, open-label clinical study (the International Suicide Prevention Trial [InterSePT]) of 2 years' duration comparing clozapine and olanzapine in patients with schizophrenia (62%) or schizoaffective disorder (38%) who were judged to be at risk for recurrent suicidal behavior.
For more Therapeutic Uses (Complete) data for CLOZAPINE (8 total), please visit the HSDB record page.
Drug Warnings
BOXED WARNING: 1. AGRANULOCYTOSIS: Because of a significant risk of agranulocytosis, a potentially life threatening adverse event, clozapine should be reserved for use in (1) the treatment of severely ill patients with schizophrenia who fail to show an acceptable response to adequate courses of standard antipsychotic drug treatment, or (2) for reducing the risk of recurrent suicidal behavior in patients with schizophrenia or schizoaffective disorder who are judged to be at risk of re-experiencing suicidal behavior. Patients being treated with clozapine must have a baseline white blood cell (WBC) count and absolute neutrophil count (ANC) before initiation of treatment as well as regular WBC counts and ANCs during treatment and for at least 4 weeks after discontinuation of treatment. Clozapine is available only through a distribution system that ensures monitoring of WBC count and ANC according to the schedule described below prior to delivery of the next supply of medication.
BOXED WARNING: 2. SEIZURES: Seizures have been associated with the use of clozapine. Dose appears to be an important predictor of seizure, with a greater likelihood at higher clozapine doses. Caution should be used when administering clozapine to patients having a history of seizures or other predisposing factors. Patients should be advised not to engage in any activity where sudden loss of consciousness could cause serious risk to themselves or others.
BOXED WARNING: 3. MYOCARDITIS: Analyses of post-marketing safety databases suggest that clozapine is associated with an increased risk of fatal myocarditis, especially during, but not limited to, the first month of therapy. In patients in whom myocarditis is suspected, clozapine treatment should be promptly discontinued.
BOXED WARNING: 4. OTHER ADVERSE CARDIOVASCULAR AND RESPIRATORY EFFECTS: Orthostatic hypotension, with or without syncope, can occur with clozapine treatment. Rarely, collapse can be profound and be accompanied by respiratory and/or cardiac arrest. Orthostatic hypotension is more likely to occur during initial titration in association with rapid dose escalation. In patients who have had even a brief interval off clozapine, i.e., 2 or more days since the last dose, treatment should be started with 12.5 mg once or twice daily. Since collapse, respiratory arrest and cardiac arrest during initial treatment has occurred in patients who were being administered benzodiazepines or other psychotropic drugs, caution is advised when clozapine is initiated in patients taking a benzodiazepine or any other psychotropic drug.
For more Drug Warnings (Complete) data for CLOZAPINE (20 total), please visit the HSDB record page.
Pharmacodynamics
Clozapine is a psychotropic agent belonging to the chemical class of benzisoxazole derivatives that is universally regarded as the treatment of choice for treatment-resistant schizophrenia. Although it is thought to mediate its pharmacological effect through antagonism of the dopamine type 2 (D2) and the serotonin type 2A (5-HT2A) receptors, research have shown that clozapine can act on various types of receptors. Patients should be counseled regarding the risk of hypersensitivity reactions such as agranulocytosis and myocarditis with clozapine use. Clozapine-induced agranulocytosis, which is a reduction in the absolute neutrophil count or white blood cell count, places the patient at an increased risk for infection. Agranulocytosis is most likely to occur in the first 3-6 months of therapy, but it can still occur after years of treatment. The mechanism is thought to be a dose-independent and immune-mediated reaction against neutrophils. Patients are strictly monitored by lab testing (complete blood count with differential) to ensure agranulocytosis is detected and treated if it occurs. Testing is initially completed at one-week intervals but is expanded to two-week intervals at six months, and then four-week intervals at twelve months if lab results have been within an appropriate range. Monitoring parameters may change if there is any break in therapy. In Canada, the patient's lab values are reported to the manufacturer for hematological monitoring, and in the USA, the patient's lab values are reported to the REMS (Risk Evaluation and Mitigation Strategy) program. These programs function to notify the care provider of any significant drop in WBC/neutrophil count, or if there is a drop below a threshold level. Patients who enter the "Red" zone (WBC<2x109/L or ANC<1.5x109/L) should normally not be re-challenged. Clozapine-induced myocarditis is a hypersensitivity reaction that usually occurs in the third week of clozapine therapy and about 2% of clozapine patients. Monitor the patient's troponin, CRP, and ECG at baseline, and 28 days into treatment. Follow guidelines for appropriate next steps according to the patient's lab results. If myocarditis occurs, the patient should not be re-challenged with clozapine.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C18H19CLN4
Molecular Weight
326.82
Exact Mass
326.129
Elemental Analysis
C, 66.15; H, 5.86; Cl, 10.85; N, 17.14
CAS #
5786-21-0
Related CAS #
Clozapine-d8; 1185053-50-2; Clozapine-d4; 204395-52-8; Clozapine N-oxide; 34233-69-7
PubChem CID
135398737
Appearance
White to light yellow solid powder
Density
1.3±0.1 g/cm3
Boiling Point
489.2±55.0 °C at 760 mmHg
Melting Point
182-185°C
Flash Point
249.6±31.5 °C
Vapour Pressure
0.0±1.2 mmHg at 25°C
Index of Refraction
1.681
LogP
2.36
Hydrogen Bond Donor Count
1
Hydrogen Bond Acceptor Count
3
Rotatable Bond Count
1
Heavy Atom Count
23
Complexity
446
Defined Atom Stereocenter Count
0
SMILES
ClC1C([H])=C([H])C2=C(C=1[H])N=C(C1=C([H])C([H])=C([H])C([H])=C1N2[H])N1C([H])([H])C([H])([H])N(C([H])([H])[H])C([H])([H])C1([H])[H]
InChi Key
QZUDBNBUXVUHMW-UHFFFAOYSA-N
InChi Code
InChI=1S/C18H19ClN4/c1-22-8-10-23(11-9-22)18-14-4-2-3-5-15(14)20-16-7-6-13(19)12-17(16)21-18/h2-7,12,20H,8-11H2,1H3
Chemical Name
3-chloro-6-(4-methylpiperazin-1-yl)-11H-benzo[b][1,4]benzodiazepine
Synonyms
HF-1854; LX 100-129; HF 1854; LX 100129; HF1854; LX100129; Leponex; Fazaclo; 5786-21-0; Leponex; Fazaclo; CLOZARIL; Clorazil; Iprox; CLOZARIL; Clozapin; Clozaril
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: 50~65 mg/mL (153~198.9 mM)
Water: <1 mg/mL
Ethanol: ~32 mg/mL (~97.9 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (7.65 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (7.65 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (7.65 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


Solubility in Formulation 4: 5%DMSO + Corn oil: 5.0mg/ml (15.30mM)

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 3.0598 mL 15.2989 mL 30.5979 mL
5 mM 0.6120 mL 3.0598 mL 6.1196 mL
10 mM 0.3060 mL 1.5299 mL 3.0598 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT02714894 Active
Recruiting
Drug: Clozapine Schizophrenia Centre for Addiction and
Mental Health
April 2016 N/A
NCT04325386 Active
Recruiting
Other: Education Sessions
Other: No Education Session
Schizophrenia Schizoaffective University of Maryland, Baltimore February 1, 2020 Not Applicable
NCT04074213 Recruiting Drug: Clozapine Lymphoma
Leukemia
University Hospital, Caen March 1, 2019 N/A
NCT05208190 Recruiting Drug: Clozapine
Drug: treatment as usual
Schizophrenia
Schizoaffective Disorder
New York State Psychiatric
Institute
March 17, 2022 Phase 4
NCT05316883 Recruiting Drug: Clozapine Schizophrenia
Psychosis
Mental Health Services in the
Capital Region, Denmark
February 28, 2021 Phase 4
Contact Us