yingweiwo

Conoidin A

Alias: Conoidin A
Cat No.:V2302 Purity: = 99.11%
Conoidin A is a cell permeability inhibitor of Toxoplasma gondii peroxidase II (TgPrxII) and has nematicidal properties.
Conoidin A
Conoidin A Chemical Structure CAS No.: 18080-67-6
Product category: Parasite
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
10mg
25mg
50mg
100mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: = 99.11%

Product Description
Conoidin A is a cell permeability inhibitor of Toxoplasma gondii peroxidase II (TgPrxII) and has nematicidal properties. Conoidin A covalently binds to the peroxide catalytic site Cys47 of TgPrxII and irreversibly inhibits its peroxide activity with IC50 of 23 µM. Conoidin A also inhibits the oxidation of mammalian PrxI and PrxII (but not PrxIII). Conoidin A has antioxidant, neuro-protective (neuro-protection) effects and may be utilized in study/research of ischemic heart disease.
Biological Activity I Assay Protocols (From Reference)
Targets
Toxoplasma gondii peroxidase II (TgPrxII)
ln Vitro
Signal transmission and antioxidant defense are two functions of the widely conserved family of enzymes known as peroxiredoxins. Modifications in PrxII expression have been linked to numerous human illnesses, such as cancer [1]. The enzymatic activity of TgPrxII is inhibited in vitro by conoidin A, which binds to its peroxycysteine. In Ancylostoma ceylonensis, as well as in human PrxII and PrxIV, conoidin A possesses the same level of efficacy when it comes to alkylating or cross-linking the catalytic cysteine. But against mitochondrial hPrxIII, it is ineffectual [2]. The hyperoxidation of mammalian peroxiredoxin I and II by glucose oxidase is inhibited by conoidin A (5 µM) [2].
ln Vivo
The effects of luteolin on ST-segment elevation are blocked by conoidin A (intraperitoneal injection; 5 mg/kg; three days in a row prior to MI/R injury). Furthermore, in the MI/R group, luteolin can lessen the increase in infarct size. Nevertheless, luteolin's effect was neutralized by conoidin A pretreatment. Additionally, luteolin can't lower the activities of CK-MB, AST, and LDH in vivo when cornidin A is pretreated [3].
Enzyme Assay
The knockout vector for TgPrxII was based on the chloramphenicol acetyltransferase selectable marker gene 5′TgPRXII-pTub5CAT-3′TgPRXII, in which the 5′ flanking region (1740 bp) of TgPrxII was amplified by PCR from T. gondii genomic DNA with primers PrxII-1 (5′-CCGGGTACCAGTGGTGTGCGTTCGCG-3′) and PrxII-2 (5′-CCGGGGAACTCGAGTTTCATGC-3′) and cloned between the KpnI and XhoI restriction sites of pTub5CAT in the previously described vector pT/230. The 3′ flanking region (1724 bp) was amplified with primers PrxII-3 (5′-GGAGCGGCCGCCACTCACGGAATGG-3′) and PrxII-4 (5′-CCACCGCGGACCACATAGTGGGCACC-3′) and cloned between the NotI and SacII sites. Stable transformants were generated in RH strain parasites as previously described. TgPrxII knockout parasites were identified by an indirect immunofluorescence assay and confirmed by western blotting using rabbit polyclonal anti-TgPrxII antibodies. Knockout clones KO2 and KO4.1 were isolated by limiting dilution.[1]
Cell Assay
Human small airway epithelial cells were incubated for 30 min. with 1, glucose oxidase was added and the cells were incubated for an additional 1.5 hr. Cell extracts were resolved by reducing and non-reducing SDS-PAGE, followed by western blotting with anti-Prx-SO2H/SO3 (Lab Frontier LF-PA0004) as previously described.[1]
Animal Protocol
Animal/Disease Models: Rat myocardial I/R model [3]
Doses: 5 mg/kg
Route of Administration: intraperitoneal (ip) injection; 5 mg/kg; Three days before MI/R injury
Experimental Results: Dramatically reversed the antioxidant effects of luteolin effect. Weaken the protective effect of luteolin.
References
[1]. Jeralyn D Haraldsen, et al. IDENTIFICATION OF CONOIDIN A AS A COVALENT INHIBITOR OF PEROXIREDOXIN II. Org Biomol Chem. 2009;7:3040-3048.
[2]. Gu Liu, et al. Optimisation of conoidin A, a peroxiredoxin inhibitor. ChemMedChem. 2010 Jan;5(1):41-5.
[3]. Bo Wei, et al. Luteolin ameliorates rat myocardial ischaemia-reperfusion injury through activation of peroxiredoxin II. Br J Pharmacol
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C10H8N2O2BR2
Molecular Weight
347.99072
Exact Mass
345.90
Elemental Analysis
C, 34.51; H, 2.32; Br, 45.92; N, 8.05; O, 9.19
CAS #
18080-67-6
Appearance
White to yellow solid powder
LogP
1.1
tPSA
46.4Ų
SMILES
C1=CC=C2C(=C1)N(C(=C(CBr)[N+]2=O)CBr)[O-]
InChi Key
DQKNFTLRMZOAMG-UHFFFAOYSA-N
InChi Code
InChI=1S/C10H8Br2N2O2/c11-5-9-10(6-12)14(16)8-4-2-1-3-7(8)13(9)15/h1-4H,5-6H2
Chemical Name
2,3-bis(bromomethyl)-quinoxaline 1,4-dioxide
Synonyms
Conoidin A
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : 14.29 ~70 mg/mL ( 41.06 ~201.15 mM )
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 1.43 mg/mL (4.11 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 14.3 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: 10% DMSO+40% PEG300+5% Tween-80+45% Saline: ≥ 1.43 mg/mL (4.11 mM)

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.8736 mL 14.3682 mL 28.7365 mL
5 mM 0.5747 mL 2.8736 mL 5.7473 mL
10 mM 0.2874 mL 1.4368 mL 2.8736 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us