Size | Price | Stock | Qty |
---|---|---|---|
100mg |
|
||
250mg |
|
||
500mg |
|
||
1g |
|
||
2g |
|
||
5g |
|
||
10g |
|
||
Other Sizes |
|
Purity: ≥98%
Cortisone acetate (NSC49420; NSC-49420; Cortone acetate; Cortisyl; Incortin), a steroid hormone, is an acetate ester prodrug form of cortisone with glucocoriticoid and mineral corticoid activities. It has been used for the treatment for a number of different diseases, such as severe allergies or skin problems, asthma, or arthritis.
ln Vitro |
In peripheral blood mononuclear cells (PBMC), cortisone (2.8-28,000 nM) dose-dependently reduces cortisol-induced apoptosis [1].
|
---|---|
ln Vivo |
In rabbits, cortisone (2 mg/kg; intramuscular every other day for two months) decreases tuberculin responses and BCG (Mycobacterium tuberculosis vaccine strain) lesions [2].
|
Cell Assay |
Glucocorticoids (GCs) have been considered to regulate immune cell systems through induction of apoptosis in thymocytes and mature peripheral-blood lymphocytes. Here we report that apoptosis induced by cortisol in mitogen-activated peripheral-blood mononuclear cells (PBMC) is suppressed by cortisone, an oxidized metabolite of cortisol. Apoptosis in PBMCs is quantified by a cell death ELISA procedure, which can specifically detect fragmented DNA. Cortisol induced PBMC-apoptosis at concentrations more than 10 ng/ml (28 nM) in concanavalin A-stimulated PBMCs and cortisone suppressed this apoptosis at a concentration range of 1-10,000 ng/ml (2.8-28,000 nM) dose-dependently. Prednisone, a synthetic oxidized-GC, also suppressed the apoptosis-inducing effect of cortisol in a dose-dependent manner. Suppression of cortisol-induced apoptosis by cortisone was consistently observed in PBMCs derived from 16 healthy subjects. Examination for inhibitory activities of the steroids against [3H]dexamethasone binding to PBMCs suggested that cortisone can bind cellular GC-receptors (GC-Rs), but the affinity of cortisone to GCRs is 1/30 or less than that of cortisol. The results raised a possible role of cortisone in cortisol-mediated regulation of apoptosis in activated human PBMCs. The counteracting action of cortisone against cortisol-induced apoptosis may take place partially through intervention of GC-receptors (GC-Rs), but may also be due to unknown pathway(s) different from those mediated by cellular GC-Rs[1].
|
Animal Protocol |
Animal/Disease Models: Male New Zealand white rabbits (2.1-2.4 kg) were injected with BCG six days after the first dose [2]
Doses: 2 mg/kg Route of Administration: intramuscularinjection every other day for 2 months Experimental Results: BCG lesions and tuberculosis bacteria were diminished factor reaction. diminished the number of infiltrating mononuclear cells (MN), the number of caseous necrosis and ulcers, and the percentage of β-galactosidase-positive NMs. |
ADME/Pharmacokinetics |
Absorption, Distribution and Excretion
Corticosteroids are eliminated predominantly in the urine. Data regarding the clearance of cortisone acetate is not readily available. |
Toxicity/Toxicokinetics |
Protein Binding
Corticosteroids are generally bound to corticosteroid binding globulin and serum albumin in plasma. |
References | |
Additional Infomation |
Cortisone acetate is a corticosteroid hormone.
Cortisone acetate was first isolate in 1935 and became more widely researched in 1949. Since then, glucocorticoids such as cortisone acetate have been used to treat a number of inflammatory conditions such as endocrine, rheumatic, collagen, dermatologic, allergic, ophthalmic, respiratory, hematologic, neoplastic, edematous, and gastrointestinal diseases and disorders. Cortisone acetate was granted FDA approval on 13 June 1950. Cortisone Acetate is the acetate salt form of cortisone, a synthetic or semisynthetic analog of the naturally occurring cortisone hormone produced by the adrenal glands with anti-inflammatory and immunomodulating properties. Cortisone acetate diffuses through the cell membrane and binds to nuclear glucocorticoid receptors. The receptor-ligand complex binds to promotor regions of certain genes and initiates RNA transcription. This results in an induction of synthesis of certain anti-inflammatory proteins while inhibiting the synthesis of certain inflammatory mediators. A naturally occurring glucocorticoid that has been used in replacement therapy for ADRENAL INSUFFICIENCY and as an anti-inflammatory agent. Cortisone itself is inactive; it is converted in the liver to the active metabolite HYDROCORTISONE. (From Martindale, The Extra Pharmacopoeia, 30th ed, p726) See also: Cortisone (has active moiety) ... View More ... Drug Indication Cortisone acetate is indicated to treat a wide variety of endocrine, rheumatic, collagen, dermatologic, allergic, ophthalmic, respiratory, hematologic, neoplastic, edematous, and gastrointestinal diseases and disorders. Mechanism of Action The short term effects of corticosteroids are decreased vasodilation and permeability of capillaries, as well as decreased leukocyte migration to sites of inflammation. Corticosteroids binding to the glucocorticoid receptor mediates changes in gene expression that lead to multiple downstream effects over hours to days. Glucocorticoids inhibit neutrophil apoptosis and demargination; they inhibit phospholipase A2, which decreases the formation of arachidonic acid derivatives; they inhibit NF-Kappa B and other inflammatory transcription factors; they promote anti-inflammatory genes like interleukin-10. Lower doses of corticosteroids provide an anti-inflammatory effect, while higher doses are immunosuppressive. High doses of glucocorticoids for an extended period bind to the mineralocorticoid receptor, raising sodium levels and decreasing potassium levels. |
Molecular Formula |
C23H30O6
|
|
---|---|---|
Molecular Weight |
402.48
|
|
Exact Mass |
402.204
|
|
Elemental Analysis |
C, 68.64; H, 7.51; O, 23.85
|
|
CAS # |
50-04-4
|
|
Related CAS # |
Cortisone;53-06-5
|
|
PubChem CID |
5745
|
|
Appearance |
Typically exists as white to off-white solids at room temperature
|
|
Density |
1.3±0.1 g/cm3
|
|
Boiling Point |
577.3±50.0 °C at 760 mmHg
|
|
Melting Point |
237-240 °C(lit.)
|
|
Flash Point |
197.3±23.6 °C
|
|
Vapour Pressure |
0.0±3.6 mmHg at 25°C
|
|
Index of Refraction |
1.566
|
|
LogP |
2.53
|
|
Hydrogen Bond Donor Count |
1
|
|
Hydrogen Bond Acceptor Count |
6
|
|
Rotatable Bond Count |
4
|
|
Heavy Atom Count |
29
|
|
Complexity |
827
|
|
Defined Atom Stereocenter Count |
6
|
|
SMILES |
O([H])[C@]1(C(C([H])([H])OC(C([H])([H])[H])=O)=O)C([H])([H])C([H])([H])[C@@]2([H])[C@]3([H])C([H])([H])C([H])([H])C4=C([H])C(C([H])([H])C([H])([H])[C@]4(C([H])([H])[H])[C@@]3([H])C(C([H])([H])[C@@]21C([H])([H])[H])=O)=O
|
|
InChi Key |
ITRJWOMZKQRYTA-RFZYENFJSA-N
|
|
InChi Code |
InChI=1S/C23H30O6/c1-13(24)29-12-19(27)23(28)9-7-17-16-5-4-14-10-15(25)6-8-21(14,2)20(16)18(26)11-22(17,23)3/h10,16-17,20,28H,4-9,11-12H2,1-3H3/t16-,17-,20+,21-,22-,23-/m0/s1
|
|
Chemical Name |
2-((8S,9S,10R,13S,14S,17R)-17-hydroxy-10,13-dimethyl-3,11-dioxo-2,3,6,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl)-2-oxoethyl acetate
|
|
Synonyms |
|
|
HS Tariff Code |
2934.99.9001
|
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
|
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
|
|||
---|---|---|---|---|
Solubility (In Vivo) |
Solubility in Formulation 1: ≥ 0.5 mg/mL (1.24 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 5.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL. Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution. Solubility in Formulation 2: ≥ 0.5 mg/mL (1.24 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution. For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 5.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly. Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution. View More
Solubility in Formulation 3: ≥ 0.5 mg/mL (1.24 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution. Solubility in Formulation 4: 25 mg/mL (62.11 mM) in 0.1% Tween-80 in PBS (add these co-solvents sequentially from left to right, and one by one), suspension solution; with ultrasonication. |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 2.4846 mL | 12.4230 mL | 24.8460 mL | |
5 mM | 0.4969 mL | 2.4846 mL | 4.9692 mL | |
10 mM | 0.2485 mL | 1.2423 mL | 2.4846 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.