yingweiwo

Crolibulin

Alias: EPC 2407; EPC-2407; EPC2407; Crolibulin crinobulin
Cat No.:V18816 Purity: ≥98%
Crolibulin, formerly known as EPC2407 and crinobulin, is a small molecule tubulin polymerization inhibitor with potential antineoplastic activity.
Crolibulin
Crolibulin Chemical Structure CAS No.: 1000852-17-4
Product category: Microtubule(Tubulin)
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
2mg
5mg
10mg
25mg
50mg
100mg
500mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Crolibulin, formerly known as EPC2407 and crinobulin, is a small molecule tubulin polymerization inhibitor with potential antineoplastic activity. The microtubulin inhibitor EPC2407 attaches itself to the beta-tubulin'scolchicine-bindingsite and prevents tubulin from polymerizing into microtubules. This can stop tumor cell growth, induce apoptosis, and stop cell cycle arrest. This agent, which is classified as a vascular disruption agent (VDA), also interferes with the neovascularization of tumors, potentially leading to tumor hypoxia, ischemic necrosis, and decreased tumor blood flow.

Biological Activity I Assay Protocols (From Reference)
Targets
Tubulin polymerization
ln Vitro
Crolibulin exhibits notable cytotoxic activity against HT-29 cells, with an IC50 of 0.52 μM[2].
Crolibulin exhibits strong inhibition of mitosis at the G2/M stage and is effective against a variety of experimental tumors[2].
References

[1]. Multimodal imaging guided preclinical trials of vascular targeting in prostate cancer. Oncotarget. 2015 Sep 15;6(27):24376-92.

[2]. Discovery and Optimization of Novel 5-Indolyl-7-arylimidazo[1,2-a]pyridine-8-carbonitrile Derivatives as Potent Antitubulin Agents Targeting Colchicine-binding Site. Sci Rep. 2017 Feb 27;7:43398.

[3]. EPC2407, a new beta-tubulin vascular disrupting agent with potent apoptosis and cell growth inhibition. Journal of Clinical Oncology 25, no. 18_suppl (June 20, 2007) 14043-14043.

Additional Infomation
Crolibulin is a neoflavonoid.
EPC2407 is a novel small molecule vascular disruption agent and apoptosis inducer for the treatment of patients with advanced solid tumors and lymphomas. It is intended for the treatment of advanced cancer patients with solid tumors that are well vascularized. These tumors include the frequently occurring cancers of the lung, gastrointestinal tract, ovaries, and breast.
Crolibulin has been used in trials studying the treatment of Solid Tumor and Anaplastic Thyroid Cancer.
Crolibulin is a small molecule tubulin polymerization inhibitor with potential antineoplastic activity. Microtubulin inhibitor EPC2407 binds to the colchicine-binding site on beta-tubulin and inhibits the polymerization of tubulin into microtubules, which may result in cell cycle arrest, the induction of apoptosis, and the inhibition of tumor cell proliferation. As a vascular disruption agent (VDA), this agent also disrupts tumor neovascularization, which may result in a reduction in tumor blood flow and tumor hypoxia and ischemic necrosis.
Drug Indication
Investigated for use/treatment in cancer/tumors (unspecified).
Mechanism of Action
The molecule has been shown to induce tumor cell apoptosis and selectively inhibit growth of proliferating cell lines, including multi-drug resistant cell lines.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C18H17BRN4O3
Molecular Weight
417.26
Exact Mass
416.048
Elemental Analysis
C, 51.81; H, 4.11; Br, 19.15; N, 13.43; O, 11.50
CAS #
1000852-17-4
Related CAS #
1000852-17-4
PubChem CID
23649181
Appearance
Light yellow to yellow solid powder
LogP
4.711
Hydrogen Bond Donor Count
3
Hydrogen Bond Acceptor Count
7
Rotatable Bond Count
3
Heavy Atom Count
26
Complexity
607
Defined Atom Stereocenter Count
1
SMILES
BrC1C(=C(C([H])=C(C=1[H])[C@@]1([H])C(C#N)=C(N([H])[H])OC2C(=C(C([H])=C([H])C1=2)N([H])[H])N([H])[H])OC([H])([H])[H])OC([H])([H])[H]
InChi Key
JXONINOYTKKXQQ-CQSZACIVSA-N
InChi Code
InChI=1S/C18H17BrN4O3/c1-24-13-6-8(5-11(19)17(13)25-2)14-9-3-4-12(21)15(22)16(9)26-18(23)10(14)7-20/h3-6,14H,21-23H2,1-2H3/t14-/m1/s1
Chemical Name
(4R)-2,7,8-triamino-4-(3-bromo-4,5-dimethoxyphenyl)-4H-chromene-3-carbonitrile
Synonyms
EPC 2407; EPC-2407; EPC2407; Crolibulin crinobulin
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: ~125 mg/mL (~299.6 mM)
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.3966 mL 11.9829 mL 23.9659 mL
5 mM 0.4793 mL 2.3966 mL 4.7932 mL
10 mM 0.2397 mL 1.1983 mL 2.3966 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT01240590 Completed Drug: Crolibulin
Drug: Cisplatin
Anaplastic Thyroid Cancer
Solid Tumor
Anaplastic Thyroid Cancer January 26, 2011 Phase 1
Phase 2
NCT00423410 Completed Drug: EPC2407
(crinobulin)
Advanced Cancer EpiCept Corporation December 2006 Phase 1
Biological Data
  • Sci Rep . 2017 Feb 27:7:43398.
Contact Us