yingweiwo

D-Pinitol

Alias: 10284-63-6; Pinitol; 3-O-Methyl-D-chiro-inositol; (+)-Pinitol; Inzitol; D-ononitol; Methylinositol;
Cat No.:V20223 Purity: ≥98%
D-pinitol (3-O-Methyl-D-chiro-inositol) is a natural compound found in several plants, like Pinaceae and Leguminosae.
D-Pinitol
D-Pinitol Chemical Structure CAS No.: 10284-63-6
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1g
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description
D-pinitol (3-O-Methyl-D-chiro-inositol) is a natural compound found in several plants, like Pinaceae and Leguminosae. D-pinitol has hypoglycemic activity and cardiovascular system protection. D-pinitol has antiviral and larvicidal activity.
Biological Activity I Assay Protocols (From Reference)
Targets
Natural product
ln Vitro
D-pinitol stimulates p53 and Bax while suppressing NF-κB and Bcl-2 to induce MCF-7 cell apoptosis [3].
Development of drugs from natural products has been undergoing a gradual evoluation. Many plant derived compounds have excellent therapeutic potential against various human ailments. They are important sources especially for anticancer agents. A number of promising new agents are in clinical development based on their selective molecular targets in the field of oncology. D-pinitol is a naturally occurring compound derived from soy which has significant pharmacological activitites. Therefore we selected D-pinitol in order to evaluate apoptotic potential in the MCF-7 cell line. Human breast cancer cells were treated with different concentrations of D-pinitol and cytotoxicity was measured by MTT and LDH assays. The mechanism of apoptosis was studied with reference to expression of p53, Bcl-2, Bax and NF-kB proteins. The results revealed that D-pinitol significantly inhibited the proliferation of MCF-7 cells in a concentration-dependent manner, while upregulating the expression of p53, Bax and down regulating Bcl-2 and NF-kB. Thus the results obtained in this study clearly vindicated that D-pinitol induces apotosis in MCF-7 cells through regulation of proteins of pro- and anti-apoptotic cascades.[3]
ln Vivo
D-pinitol, a compound isolated from Pinaceae and Leguminosae plants, has been reported to possess insulin-like properties. Although the hypoglycemic activity of D-pinitol was recognized in recent years, the molecular mechanism of D-pinitol in the treatment of diabetes mellitus remains unclear. In this investigation, a model of type 2 diabetes mellitus (T2DM) with insulin resistance was established by feeding a high-fat diet (HFD) and injecting streptozocin (STZ) to Sprague-Dawley (SD) rats, targeting the exploration of more details of the mechanism in the therapy of T2DM. D-pinitol was administrated to the diabetic rats as two doses [30, 60 mg/(kg·body weight·day)]. The level of fasting blood glucose (FBG) was decreased 12.63% in the high-dosage group, and the ability of oral glucose tolerance was improved in D-pinitol-treated groups. The biochemical indices revealed that D-pinitol had a positive effect on hypoglycemic activity. Western boltting suggested that D-pinitol could promote the expression of the phosphatidylinositol-3-kinase (PI3K) p85, PI3Kp110, as well as the downstream target protein kinase B/Akt (at Ser473). Besides, D-pinitol inhibited the expression of glycogen synthesis kinase-3β (GSK-3β) protein and regulated the expression of glycogen synthesis (GS) protein and then accelerated the glycogen synthesis. Above all, D-pinitol played a positive role in regulating insulin-mediated glucose uptake in the liver through translocation and activation of the PI3K/Akt signaling pathway in T2DM rats.[1]
D-pinitol is a cyclitol present in several edible plant species and extensively investigated for the treatment of metabolic diseases in humans, as food supplement, and demonstrated protective effects in the cardiovascular system. For these reasons, the present work aimed at investigating the mechanisms involved in the vascular effects of D-pinitol in mouse mesenteric artery. Mesenteric arteries from male C57BL/6 mice were mounted in a wire myograph. Nitrite was measured by the 2,3-diaminonaphthalene (DAN) method. Protein expression and phosphorylation were measured by Western blot. The systolic blood pressure (SBP) was measured by tail-cuff plethysmography. D-pinitol induced a concentration-dependent vasodilatation in endothelium-intact, but not in endothelium-denuded arteries. Nω-Nitro-L-arginine methyl ester (300 μM) abolished the effect of D-pinitol, while 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 10 μM) shifted the concentration-response curve to the right. KN-93 (1 μM) blunted the vasodilator effect of D-pinitol, but H-89 (0.1 μM) did not change it. 1-[2-(Trifluoromethyl) phenyl]imidazole (300 μM), indomethacin (10 μM), celecoxib (5 μM), wortmannin (1 μM), ruthenium red (10 μM), tiron (10 μM), MnTMPyP (30 μM), MPP (0.1 μM), PHTPP (0.1 μM), and atropine (1 μM) did not change the effect of D-pinitol. D-pinitol increased the concentration of nitrite, which was inhibited by L-NAME and calmidazolium (10 μM). D-pinitol increased the phosphorylation level of eNOS activation site at Ser1177 and reduced the phosphorylation level of its inactivation site at Thr495. In normotensive mice, the intraperitoneal administration of D-pinitol (10 mg/kg) induced a significant reduction of the SBP after 30 min. The present results led us to conclude that D-pinitol has an endothelium- and NO-dependent vasodilator effect in mouse mesenteric artery through a mechanism dependent on the activation of eNOS by the calcium-calmodulin complex, which can explain its hypotensive effect in mice.[2]
Enzyme Assay
Pinitol (3-O-methyl-chiroinositol), a component of traditional Ayurvedic medicine (talisapatra), has been shown to exhibit anti-inflammatory and antidiabetic activities through undefined mechanisms. Because the transcription factor nuclear factor-kappaB (NF-kappaB) has been linked with inflammatory diseases, including insulin resistance, we hypothesized that pinitol must mediate its effects through modulation of NF-kappaB activation pathway. We found that pinitol suppressed NF-kappaB activation induced by inflammatory stimuli and carcinogens. This suppression was not specific to cell type. Besides inducible, pinitol also abrogated constitutive NF-kappaB activation noted in most tumor cells. The suppression of NF-kappaB activation by pinitol occurred through inhibition of the activation of IkappaBalpha kinase, leading to sequential suppression of IkappaBalpha phosphorylation, IkappaBalpha degradation, p65 phosphorylation, p65 nuclear translocation, and NF-kappaB-dependent reporter gene expression. Pinitol also suppressed the NF-kappaB reporter activity induced by tumor necrosis factor receptor (TNFR)-1, TNFR-associated death domain, TNFR-associated factor-2, transforming growth factor-beta-activated kinase-1 (TAK-1)/TAK1-binding protein-1, and IkappaBalpha kinase but not that induced by p65. The inhibition of NF-kappaB activation thereby led to down-regulation of gene products involved in inflammation (cyclooxygenase-2), proliferation (cyclin D1 and c-myc), invasion (matrix metalloproteinase-9), angiogenesis (vascular endothelial growth factor), and cell survival (cIAP1, cIAP2, X-linked inhibitor apoptosis protein, Bcl-2, and Bcl-xL). Suppression of these gene products by pinitol enhanced the apoptosis induced by TNF and chemotherapeutic agents and suppressed TNF-induced cellular invasion. Our results show that pinitol inhibits the NF-kappaB activation pathway, which may explain its ability to suppress inflammatory cellular responses.[4]
Cell Assay
Maintenance of michigan cancer foundation-7 (MCF-7) cell lines [3]
Human mammary carcinoma cell lines MCF-7 were grown as mono layers in Dulbecco’s modified eagle medium (DMEM) supplemented with 10% v/v heat inactivated fetal bovine serum (FBS), antibiotics, such as penicillin 50 U/mL, streptomycin 50µg/mL and 1 mmol/L sodium pyruvate under standard conditions containing in a humidified incubator with 5% CO2 at 37ºC. The medium was changed for every three days.
Viability assay [3]
Cell viability was assessed as per the standard protocol by MTT (3-4,5-dimethylthiazol-2-yl-2,5- diphenyltetrazolium bromide) method of Mossmann (1983). The cell viability is calculated using the formula: %growth inhibition=(A570nm of treated cells/A570nm of control cells)×100.
Animal Protocol
Vascular Reactivity[2]
Sixty-six male C57BL/6 mice, aged 10–12 weeks, were used in the present study. Mice were euthanized by decapitation, the abdomen was cut, and the mesenteric bed was quickly removed and placed in a dissecting plate with physiological salt solution (PSS) with the following composition (mM): NaCl 119.0; KCl 4.7; KH2PO4 0.4; NaHCO3 14.9; MgSO4.7H2O 1.17; CaCl2.2H2O 2.5; and glucose 5.5. A segment of the second branch of the mesenteric artery was dissected, and the adipose and connective tissues were removed. The arteries were sectioned into rings (1.6–2.0 mm long) with an internal diameter ranging from 150 to 250 μm. The rings were mounted in a wire myograph (620M, DMT, Denmark), kept in carbogen aerated PSS at 37°C. After mounting, the artery was stretched to a length that yielded a circumference equivalent to 90% of that given by an internal pressure of 100 mmHg; this required a load of approximately 200 mg. The vessel was maintained for an equilibration period of 60 min. The mechanical activity was recorded isometrically as previously described (Silva et al., 2016). The functionality of the arteries was observed by the contraction induced by phenylephrine (3 μM) and by the vasodilator effect induced by acetylcholine (ACh, 10 μM) in arteries pre-contracted with phenylephrine. Arteries with ACh-induced vasodilatation higher than 70% were considered with functional endothelium. In some experimental procedures, the endothelium was removed by rubbing the lumen slightly with the tungsten wire. The removal of the endothelium was confirmed by the absence of vasodilatation induced by ACh in precontracted arteries. The vasodilator effect of D-pinitol was evaluated by concentration-response curves (1 nM to 100 μM) in mesenteric arteries in the presence and the absence of a functional endothelium pre-contracted with phenylephrine (3 μM). The participation of nitric oxide synthase (NOS) was investigated in arteries pretreated with Nω-nitro-L-arginine-methyl-ester (L-NAME; 300 μM), a non-selective inhibitor of NOS, and 1-(2-trifluoromethylphenyl) imidazole (TRIM; 300 μM), a selective inhibitor of neuronal NOS (nNOS). The activation of guanylate cyclase was investigated with 1H- [1,2,4]-oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 10 μM). The involvement of cyclooxygenase (COX) 1 and 2, phosphatidylinositol-3-kinase (PI3K), Ca2+/calmodulin-dependent kinase II (CaMKII), and non-selective cationic channels was verified in arteries pretreated with indomethacin (10 μM), celecoxib (5 μM), wortmannin (1 μM), KN-93 (1 μM), and ruthenium red (10 μM), respectively. Tiron (10 μM) and MnTMPyP (30 μM), a cell-permeable analog of superoxide dismutase, were used to investigate the action of antioxidant drugs on the vasodilator effect of D-pinitol. The participation of muscarinic receptors and α and β estrogen receptors was investigated in arteries pretreated with atropine (1 μM), MPP (0.1 μM), and PHTPP (0.1 μM), respectively.
Nitrite Measurement in Mouse Mesenteric Artery[2]
The assessment of NO production in the mesenteric artery was performed indirectly by the measurement of nitrite (NO2-) using the fluorescence method with 2,3-diaminonaphthalene (DAN), according to Silva et al. (2016). The mesenteric artery branches were placed in PSS, at 37°C in 5% CO2 atmosphere. Samples were collected in the absence (basal) or the presence of D-pinitol (20 μM) or ACh (10 μM). The involvement of NOS and calmodulin in the production of nitrite was evaluated in the presence of L-NAME (300 μM) and calmidazolium (10 μM), respectively. 150 μl samples were collected, added to 150 μl of purified water, followed by the immediate addition of 15 μl fresh DAN solution (0.05 mg/l in 0.62 M HCl) in 96-well opaque black plates (Costar®, United States). The reaction proceeded for 10 min at room temperature and protected from light. After this period, the reaction was stopped with 5 μl of NaOH (2.8 N) and the absorbance determined using a spectrofluorometer (Fluoroskan Ascent FL, Thermo Scientific) at 365 and 415 nm, as respective excitation and emission wavelengths. The nitrite concentration in the samples was calculated using a standard curve with predetermined concentrations of sodium nitrite in each experiment and normalized by the amount of protein in the branches. The results were expressed in [nitrite] nM/μg of protein.
References

[1]. Effects of D-Pinitol on Insulin Resistance through the PI3K/Akt Signaling Pathway in Type 2Diabetes Mellitus Rats. J Agric Food Chem. 2015 Jul 8;63(26):6019-26.

[2]. Activation of eNOS by D-pinitol Induces an Endothelium-Dependent Vasodilatation in MouseMesenteric Artery. Front Pharmacol. 2018 May 22;9:528.

[3]. D-pinitol promotes apoptosis in MCF-7 cells via induction of p53 and Bax and inhibition of Bcl-2 and NF-κB. Asian Pac J Cancer Prev. 2014;15(4):1757-62.

[4]. Pinitol targets nuclear factor-kappaB activation pathway leading to inhibition of gene products associated with proliferation, apoptosis, invasion, and angiogenesis. Mol Cancer Ther. 2008 Jun;7(6):1604-14.

Additional Infomation
D-pinitol is the D-enantiomer of pinitol. It has a role as a geroprotector and a member of compatible osmolytes. It is functionally related to a 1D-chiro-inositol. It is an enantiomer of a L-pinitol.
Methylinositol has been used in trials studying the treatment of Dementia and Alzheimer's Disease.
D-Pinitol has been reported in Abies pindrow, Glycine max, and other organisms with data available.
See also: Ononitol, (+)- (annotation moved to).
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C7H14O6
Molecular Weight
194.1825
Exact Mass
194.079
Elemental Analysis
C, 43.30; H, 7.27; O, 49.43
CAS #
10284-63-6
PubChem CID
164619
Appearance
White to off-white solid powder
Density
1.6±0.1 g/cm3
Boiling Point
317.2±42.0 °C at 760 mmHg
Melting Point
178-185ºC
Flash Point
145.6±27.9 °C
Vapour Pressure
0.0±1.5 mmHg at 25°C
Index of Refraction
1.588
LogP
-0.74
Hydrogen Bond Donor Count
5
Hydrogen Bond Acceptor Count
6
Rotatable Bond Count
1
Heavy Atom Count
13
Complexity
158
Defined Atom Stereocenter Count
4
SMILES
COC1[C@@H]([C@H](C([C@@H]([C@@H]1O)O)O)O)O
InChi Key
DSCFFEYYQKSRSV-KLJZZCKASA-N
InChi Code
InChI=1S/C7H14O6/c1-13-7-5(11)3(9)2(8)4(10)6(7)12/h2-12H,1H3/t2-,3-,4-,5-,6+,7+/m0/s1
Chemical Name
3-O-methyl-D-chiro-inositol
Synonyms
10284-63-6; Pinitol; 3-O-Methyl-D-chiro-inositol; (+)-Pinitol; Inzitol; D-ononitol; Methylinositol;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~125 mg/mL (~643.73 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.08 mg/mL (10.71 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.08 mg/mL (10.71 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.08 mg/mL (10.71 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 5.1499 mL 25.7493 mL 51.4986 mL
5 mM 1.0300 mL 5.1499 mL 10.2997 mL
10 mM 0.5150 mL 2.5749 mL 5.1499 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
Development of NIC5-15 in the Treatment of Alzheimer's Disease
CTID: NCT00470418
Phase: Phase 2
Status: Completed
Date: 2017-01-09
Effects of Pinitol on Hidrocarbonated Metabolism Parameters in Diabetic, Impaired and Normal Fasting Glucose Subjects
CTID: NCT01754792
Phase: N/A
Status: Completed
Date: 2014-10-28
Effects of Different Doses of Pinitol on Carbohydrate Metabolism Parameters in Healthy Subjects
CTID: NCT01738763
Phase: N/A
Status: Completed
Date: 2012-11-30
Safety Evaluation for Excessive Ingestion of Food Containing Pinitol
CTID: UMIN000028319
Phase: Not applicable
Status: Complete: follow-up complete
Date: 2017-07-21
A Randomized, Double-Blind, Placebo-Controlled, Parallel Group Comparison Study on Improvements in Glucose Metabolism by Daily Ingestion of Products Containing Pinitol
CTID: UMIN000026321
Phase: Not applicable
Status: Complete: follow-up complete
Date: 2017-02-27
Clinical trial to assess the effect of pinitol containing complex on postprandial blood glucose level.
CTID: UMIN000023726
Status: Complete: follow-up complete
Date: 2016-08-26
Contact Us