Size | Price | Stock | Qty |
---|---|---|---|
100mg |
|
||
500mg |
|
||
Other Sizes |
|
Toxicity/Toxicokinetics |
Effects During Pregnancy and Lactation
◉ Summary of Use during Lactation Because no information is available on the long-term use of dantrolene during breastfeeding, an alternate drug may be preferred, especially while nursing a newborn or preterm infant. After short-term use, the drug would be expected to be eliminated from milk in 1 to 2 days. ◉ Effects in Breastfed Infants Relevant published information was not found as of the revision date. ◉ Effects on Lactation and Breastmilk Relevant published information was not found as of the revision date. |
---|---|
Additional Infomation |
Crystals (in aqueous DMF). (NTP, 1992)
Dantrolene sodium (anhydrous) is the anhydrous sodium salt of dantrolene. It contains a dantrolene(1-). Dantrolene Sodium is the sodium salt form of dantrolene, a hydantoin derivative and direct-acting skeletal muscle relaxant. Dantrolene depresses excitation-contraction coupling in skeletal muscle by binding to the ryanodine receptor 1, and decreasing intracellular calcium concentration. Ryanodine receptors mediate the release of calcium from the sarcoplasmic reticulum, an essential step in muscle contraction. Skeletal muscle relaxant that acts by interfering with excitation-contraction coupling in the muscle fiber. It is used in spasticity and other neuromuscular abnormalities. Although the mechanism of action is probably not central, dantrolene is usually grouped with the central muscle relaxants. See also: Dantrolene (has active moiety). |
Molecular Formula |
C14H9N4NAO5
|
---|---|
Molecular Weight |
336.2348
|
Exact Mass |
336.047
|
CAS # |
14663-23-1
|
Related CAS # |
Dantrolene;7261-97-4;Dantrolene sodium hemiheptahydrate;24868-20-0
|
PubChem CID |
6604100
|
Appearance |
Yellow to orange solid powder
|
Boiling Point |
85°C 4mm
|
Melting Point |
534 to 536 °F (NTP, 1992)
|
Flash Point |
283.1ºC
|
LogP |
1.714
|
Hydrogen Bond Donor Count |
0
|
Hydrogen Bond Acceptor Count |
6
|
Rotatable Bond Count |
3
|
Heavy Atom Count |
24
|
Complexity |
536
|
Defined Atom Stereocenter Count |
0
|
SMILES |
C1C(=NC(=O)N1/N=C/C2=CC=C(O2)C3=CC=C(C=C3)[N+](=O)[O-])[O-].[Na+]
|
InChi Key |
KSRLIXGNPXAZHD-HAZZGOGXSA-M
|
InChi Code |
InChI=1S/C14H10N4O5.Na/c19-13-8-17(14(20)16-13)15-7-11-5-6-12(23-11)9-1-3-10(4-2-9)18(21)22;/h1-7H,8H2,(H,16,19,20);/q;+1/p-1/b15-7+;
|
Chemical Name |
sodium;3-[(E)-[5-(4-nitrophenyl)furan-2-yl]methylideneamino]-2-oxo-4H-imidazol-5-olate
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month Note: Please store this product in a sealed and protected environment, avoid exposure to moisture. |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 2.9742 mL | 14.8708 mL | 29.7415 mL | |
5 mM | 0.5948 mL | 2.9742 mL | 5.9483 mL | |
10 mM | 0.2974 mL | 1.4871 mL | 2.9742 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.