yingweiwo

Daphnetin (7,8-dihydroxycoumarin)

Alias:
Cat No.:V1476 Purity: ≥98%
Daphnetin (NSC-633563; NSC633563; 7,8-dihydroxycoumarin), a naturally occuring coumarin analog isolated from plants of the genus Daphne, is a PKI-protein kinase inhibitor with important biological activity (e.g. anti-inflammatory and anti-oxidant effects).
Daphnetin (7,8-dihydroxycoumarin)
Daphnetin (7,8-dihydroxycoumarin) Chemical Structure CAS No.: 486-35-1
Product category: DNA(RNA) Synthesis
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
25mg
50mg
100mg
250mg
500mg
1g
5g
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Daphnetin (NSC-633563; NSC633563; 7,8-dihydroxycoumarin), a naturally occuring coumarin analog isolated from plants of the genus Daphne, is a PKI-protein kinase inhibitor with important biological activity (e.g. anti-inflammatory and anti-oxidant effects). The IC50 values of 7.67 μM, 9.33 μM, and 25.01 μM, respectively, indicate its inhibition of multikinases, including EGFR, PKA, and PKC. The tyrosine phosphorylation of exogenous substrate by the EGF receptor is strongly inhibited by daphnetin, as is the activity of PKA and PKC. A 24-hour exposure to daphnetin results in the inhibition of the estrogen-responsive human carcinoma cell line MCF-7, with an IC50 of 73 μM. Even at 50 μM of daphnetin, cyclin D1 levels are decreased..

Biological Activity I Assay Protocols (From Reference)
Targets
Plasmodium; EGFR ( IC50 = 7.67 μM ); PKA ( IC50 = 9.33 μM ); PKC ( IC50 = 25.01 μM )
ln Vitro

Daphnetin potently inhibits PKA and PKC activities in addition to the tyrosine phosphorylation of exogenous substrate mediated by the EGF receptor.[1] At a 24-hour exposure, daphnetin inhibits the estrogen-responsive human carcinoma cell line MCF-7, with an IC50 of 73 μM. Even at 50 μM, daphnetin lowers the amount of cyclin D1.[2] In a dose-dependent manner, daphnetin shields the cortical neurons from the dexamethasone-induced reduction in cell viability.[3] Daphnetin selectively and dose-dependently inhibits the functions of endogenous or recombinant TaPRK. [4] At concentrations of 25 μM to 40 μM, daphnetin inhibits the incorporation of 3H-hypoxanthine by Plasmodium falciparum by 50% (IC50). [5] Daphnetin blocks ERK1/ERK2'smitogenicsignaling.[6]

ln Vivo
Daphnetin significantly reduces uterine weights by 39.5% at 140 mg/kg.[2] Morris water maze tests and forced swimming tests could be performed more successfully by stress mice when given daphnetin at doses of two and eight mg/kg.[3] Mice infected with P. yoelli live much longer when daphnetin is administered.[5]
Enzyme Assay
PKA and PKC activity is found. In short, for the PKC assay, 5 mL of 40 mM cAMP in 50 mM Tris-HCl, pH 7.5, and 5 mL of daphnetin are combined with 5 mL of lipid preparation that contains 100 mM phorbol 12-myristate 13-acetate, 2.8 mg/mL phosphatidyl serine, and Triton X-100 mixed micelles. Ten milliliters of either the PKC substrate solution (10 mL) or the PKA substrate solution (10 mL)—which contains 200 mM Kemptide, 400 mM ATP, 40 mM MgCl2, 1 mg/mL BSA, 50 mM Tris-HCl, pH 7.5, and 20–25 mCi/mL[g-32P] ATP—are added to initiate the reaction. There are two different substrate solutions in each. Following a 5-minute incubation period at 25°C, 20 mL of each mixture is spotted onto a phosphocellulose disc, which is then promptly submerged in 1% H3PO4. The peptide-incorporated 32P on the discs is counted in a scintillation counter after free [g-32P] ATP is removed. Following a five-minute incubation period at 25°C, 20 mL of each mixture is spotted onto a phosphocellulose disc, which is then promptly submerged in 1% H3PO4. Peptide-incorporated 32P on the discs is counted in a scintillation counter after free [g-32P] ATP is removed.
Cell Assay
The MTT assay in microculture is used to estimate the cytostatic effect of daphnetin on MCF-7 tumor cells. The assay relies on the mitochondria of living cells reducing soluble tetrazolium salt. Dimethyl sulfoxide is used to dissolve the reduced product, an insoluble formazan with a purple hue, and measure it using spectrophotometry at 570 nm. The number of viable cells determines how much formazan forms. In each of the 96 microplate wells, 3 × 103 cells are seeded with a 200 μL medium containing the appropriate concentration of daphnetin. Five different concentrations of daphnetin are tested: 12.5 μM, 25 μM, 50 μM, 100 μM, and 200 μM. Following exposure for 24, 48, and 72 hours, the treated cells' percentage of proliferative inhibition is calculated in comparison to the control cells treated with solvent (PI% = [(T/C) − 1] × 100). Proliferation inhibition (PI); treated (T); and control (C). The least square concentration-response regressions are used to calculate the IC50.
Animal Protocol
Immature CD1 (Im) female mice
35 mg/kg, 70 mg/kg, and 140 mg/kg
Subcutaneously
References

[1]. Biochem Biophys Res Commun . 1999 Jul 14;260(3):682-5.

[2]. Eur J Pharmacol . 2011 Oct 1;668(1-2):35-41.

[3]. Fundam Clin Pharmacol . 2013 Oct;27(5):510-6.

[4]. Biochem Cell Biol . 2012 Oct;90(5):657-66.

[5]. Am J Trop Med Hyg . 1992 Jan;46(1):15-20.

[6]. Biochem Pharmacol . 2004 May 1;67(9):1779-88.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C9H6O4
Molecular Weight
178.14
Exact Mass
178.03
Elemental Analysis
C, 60.68; H, 3.40; O, 35.92
CAS #
486-35-1
Related CAS #
486-35-1
Appearance
Solid powder
SMILES
C1=CC(=C(C2=C1C=CC(=O)O2)O)O
InChi Key
ATEFPOUAMCWAQS-UHFFFAOYSA-N
InChi Code
InChI=1S/C9H6O4/c10-6-3-1-5-2-4-7(11)13-9(5)8(6)12/h1-4,10,12H
Chemical Name
7,8-dihydroxychromen-2-one
Synonyms

NSC 633563; 7,8-Dihydroxycoumarin; NSC-633563; NSC633563

HS Tariff Code
2934.99.03.00
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: 35~50 mg/mL (196.5~280.7 mM)
Water: <1 mg/mL
Ethanol: <1 mg/mL
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (14.03 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (14.03 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (14.03 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 5.6136 mL 28.0678 mL 56.1356 mL
5 mM 1.1227 mL 5.6136 mL 11.2271 mL
10 mM 0.5614 mL 2.8068 mL 5.6136 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us