yingweiwo

Daunorubicin citrate; RP 13057(citrate)

Alias: Daunoxome
Cat No.:V43599 Purity: ≥98%
Daunorubicin (Daunomycin) citrate is a topoisomerase II inhibitor (antagonist) with potent anti-tumor activity.
Daunorubicin citrate; RP 13057(citrate)
Daunorubicin citrate; RP 13057(citrate) Chemical Structure CAS No.: 1884557-85-0
Product category: New3
This product is for research use only, not for human use. We do not sell to patients.
Size Price
500mg
1g
Other Sizes

Other Forms of Daunorubicin citrate; RP 13057(citrate):

  • Daunorubicin HCl (Daunomycin)
  • Daunorubicin
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
Daunorubicin (Daunomycin) citrate is a topoisomerase II inhibitor (antagonist) with potent anti-tumor activity. Daunorubicin citrate inhibits DNA and RNA synthesis. Daunorubicin citrate is a cytotoxin that can inhibit cancer/tumor cell viability and causes apoptosis and necrosis. Daunorubicin citrate is also an anthracycline antibiotic. Daunorubicin citrate is used to study infections and a variety of cancers like leukemia, non-Hodgkin's lymphoma, Ewing's sarcoma, and Wilms' tumor.
Biological Activity I Assay Protocols (From Reference)
Targets
Daunorubicins/Doxorubicins; Topoisomerase II
ln Vitro
In Ehrlich ascites tumor cells, both sensitive and resistant, daunorubicin citrate (0-256 μg/mL, 30 minutes) suppresses DNA and RNA production [2]. In Molt-4 and L3.6 cells, daunorubicin citrate (7 nM-1.9 μM, 72 hours) demonstrates chemosensitivity [3][4]. Induction of necrosis and apoptosis in L3.6 cells is achieved by daunorubicin citrate (0.4 μM) for 48 hours. Induction of ROS generation in L3.6 cells is achieved by daunorubicin citrate (0.4 μM) for 120 minutes (2). K562 cells, a myeloid cell line, undergo autophagy in response to daunorubicin citrate (2 μM) for a 24-hour period [6].
ln Vivo
Rats administered daunorubicin citrate (intravenous injection, 3 mg/kg, three times, 48 hours apart) develop nephrotoxicity and cardiotoxicity [5]. In mice, sister chromatid exchange is induced by intraperitoneal injection of daunorubicin citrate at a dose of 10 mg/kg [7].
Enzyme Assay
Daunorubicin inhibits of both DNA and RNA syntheses in HeLa cells over a concentration range of 0.2 through 2 μM.
Cell Assay
Cell viability assay[3][4]
Cell Types: Molt-4 cells (human T lymphocytic leukemia cell line), L3.6 cells (metastatic human pancreatic cell line)
Tested Concentrations: 7 nM-1.9 μM
Incubation Duration: 72 hrs (hours)
Experimental Results: Inhibited cell viability with IC50 values of 40 nM (Molt-4) and 400 nM (L3.6).

Apoptosis analysis [4]
Cell Types: L3.6 Cell
Tested Concentrations: 0.4 μM
Incubation Duration: 24 h, 48 h
Experimental Results: 24 h induced necrosis without apoptosis, 48 h induced apoptosis and extensive necrosis reaction.

Western Blot Analysis [6]
Cell Types: K562 cells
Tested Concentrations: 2 μM
Incubation Duration: 24 h
Experimental Results: LC3-I was converted into LC3-II, accompanied by a significant increase in LC3 expression level.
Animal Protocol
Animal/Disease Models: Male SD (SD (Sprague-Dawley)) rat [5]
Doses: 3 mg/kg
Route of Administration: intravenous (iv) (iv)injection, 3 times, 48 hrs (hrs (hours)) apart.
Experimental Results: It resulted in a significant increase in MDA (malondialdehyde) levels in renal tissue and a significant decrease in total GPx activity. Urinary protein excretion, serum creatinine, and BUN levels increased.
References

[1]. Activity of topoisomerase inhibitors daunorubicin, idarubicin, and aclarubicin in the Drosophila Somatic Mutation and Recombination Test. Environ Mol Mutagen. 2004;43(4):250-7.

[2]. Inhibition of DNA and RNA synthesis by daunorubicin in sensitive and resistant Ehrlich ascites tumor cells in vitro. Cancer Res. 1972 Jun;32(6):1307-14.

[3]. Melanin inhibits cytotoxic effects of Doxorubicin and Daunorubicin in MOLT 4 cells. Pigment Cell Res. 2003 Aug;16(4):351-4.

[4]. An effective in vitro antitumor response against human pancreatic carcinoma with paclitaxel and Daunorubicin by induction of both necrosis and apoptosis. Anticancer Res. 2004 Sep-Oct;24(5A):2617-26. h.

[5]. Telmisartan prevents the progression of renal injury in daunorubicin rats with the alteration of angiotensin II and endothelin-1 receptor expression associated with its PPAR-γ agonist actions. Toxicology. 2011 Jan 11;279(1-3):91-9.

[6]. MiR-15a-5p Confers Chemoresistance in Acute Myeloid Leukemia by Inhibiting Autophagy Induced by Daunorubicin. Int J Mol Sci. 2021 May 13;22(10):5153.

[7]. Doxorubicin suppresses chondrocyte differentiation by stimulating ROS production. Eur J Pharm Sci. 2021 Dec 1;167:106013.

Additional Infomation
Daunorubicin Citrate is a semi-synthetic anthracycline glycoside antibiotic obtained from Streptomyces with antineoplastic activity. Daunorubicin citrate intercalates DNA, which leads to inhibition of DNA and RNA synthesis, and consequently blocks cell division and results in apoptosis. This anti-tumor antibiotic is most active in the S phase of cell division. Daunorubicin is indicated in the treatment of a wide variety of cancers including acute non-lymphocytic leukemia, non-Hodgkin lymphomas, Ewing's sarcoma, Wilms' tumor, and chronic myelocytic leukemia. (NCI05)
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C33H37NO17
Molecular Weight
719.64
Exact Mass
719.206
Elemental Analysis
C, 55.08; H, 5.18; N, 1.95; O, 37.79
CAS #
1884557-85-0
Related CAS #
Daunorubicin hydrochloride;23541-50-6;Daunorubicin;20830-81-3
PubChem CID
9961878
Appearance
Solid powder
Hydrogen Bond Donor Count
9
Hydrogen Bond Acceptor Count
18
Rotatable Bond Count
9
Heavy Atom Count
51
Complexity
1190
Defined Atom Stereocenter Count
6
SMILES
C[C@H]1[C@H]([C@H](C[C@@H](O1)O[C@H]2C[C@@](CC3=C2C(=C4C(=C3O)C(=O)C5=C(C4=O)C(=CC=C5)OC)O)(C(=O)C)O)N)O.C(C(=O)O)C(CC(=O)O)(C(=O)O)O
InChi Key
VNTHYLVDGVBPOU-QQYBVWGSSA-N
InChi Code
InChI=1S/C27H29NO10.C6H8O7/c1-10-22(30)14(28)7-17(37-10)38-16-9-27(35,11(2)29)8-13-19(16)26(34)21-20(24(13)32)23(31)12-5-4-6-15(36-3)18(12)25(21)33;7-3(8)1-6(13,5(11)12)2-4(9)10/h4-6,10,14,16-17,22,30,32,34-35H,7-9,28H2,1-3H3;13H,1-2H2,(H,7,8)(H,9,10)(H,11,12)/t10-,14-,16-,17-,22+,27-;/m0./s1
Chemical Name
(8S,10S)-8-acetyl-10-(((2R,4S,5S,6S)-4-amino-5-hydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)-6,8,11-trihydroxy-1-methoxy-7,8,9,10-tetrahydrotetracene-5,12-dione 2-hydroxypropane-1,2,3-tricarboxylate
Synonyms
Daunoxome
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: > 10 mM
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.3896 mL 6.9479 mL 13.8958 mL
5 mM 0.2779 mL 1.3896 mL 2.7792 mL
10 mM 0.1390 mL 0.6948 mL 1.3896 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us