yingweiwo

Davercin (Erythromycin cyclocarbonate)

Alias: Erythromycin A; Erythromycin A 11,12-carbonate; Erythromycin A cyclic carbonate; Davercin;
Cat No.:V19202 Purity: ≥98%
Davercin (Erythromycin cyclocarbonate), anErythromycin derivative, is a potent bacteriostatic antibiotic macrolide produced by Streptomyces erythreus and is active against Gram-positive and some Gram-negative microorganisms.
Davercin (Erythromycin cyclocarbonate)
Davercin (Erythromycin cyclocarbonate) Chemical Structure CAS No.: 55224-05-0
Product category: Bacterial
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
25mg
50mg
100mg
250mg
Other Sizes

Other Forms of Davercin (Erythromycin cyclocarbonate):

  • Erythromycin estolate
  • EM-523 (Erythromycin A enol ether )
  • Erythromycin A dihydrate
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Davercin (Erythromycin cyclocarbonate), an Erythromycin derivative, is a potent bacteriostatic antibiotic macrolide produced by Streptomyces erythreus and is active against Gram-positive and some Gram-negative microorganisms. It inhibits protein synthesis by binding to 50S ribosomal subunits. This binding process inhibits peptidyl transferase activity and interferes with translocation of amino acids during translation and assembly of proteins.

Biological Activity I Assay Protocols (From Reference)
Targets
Macrolide
ln Vitro
Erythromycin is used to treat infections of the skin and soft tissues in addition to gastrointestinal, genital, and respiratory tract infections. Since the first generation of macrolides, which had low toxicity and good tolerability, are unstable in acidic media, erythromycin, with its ten chiral centers and two sugar substituents (L-cladinose and D-desosamine), is a good starting point for numerous medicinal chemistry efforts to improve its biological profile (better activity, higher stability, and improved bioavailability[1].
ln Vivo
Macrolides, as a class of natural or semisynthetic products, express their antibacterial activity primarily by reversible binding to the bacterial 50S ribosomal subunits and by blocking nascent proteins' progression through their exit tunnel in bacterial protein biosynthesis. Generally considered to be bacteriostatic, they may also be bactericidal at higher doses. The discovery of azithromycin from the class of macrolides, as one of the most important new drugs of the 20th century, is presented as an example of a rational medicinal chemistry approach to drug design, applying classical structure-activity relationship that will illustrate an impressive drug discovery success story. However, the microorganisms have developed several mechanisms to acquire resistance to antibiotics, including macrolide antibiotics. The primary mechanism for acquiring bacterial resistance to macrolides is a mutation of one or more nucleotides from the binding site. Although azithromycin is reported to show different, two-step process of the inhibition of ribosome function of some species, more detailed elaboration of that specific mode of action is needed. New macrocyclic derivatives, which could be more potent and less prone to escape bacterial resistance mechanisms, are also continuously evaluated. A novel class of antibiotic compounds-macrolones, which are derived from macrolides and comprise macrocyclic moiety, linker, and either free or esterified quinolone 3-carboxylic group, show excellent antibacterial potency towards key erythromycin-resistant Gram-positive and Gram-negative bacterial strains, with possibly decreased potential of bacterial resistance to macrolides[1].
References

[1]. From Erythromycin to Azithromycin and New Potential Ribosome-Binding Antimicrobials. Antibiotics (Basel). 2016 Sep 1;5(3). pii: E29.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C38H65NO14
Molecular Weight
759.9210
Exact Mass
759.44
Elemental Analysis
C, 60.06; H, 8.62; N, 1.84; O, 29.47
CAS #
55224-05-0
Related CAS #

114-07-8 (free); 3521-62-8 (estolate); 16667-03-1 (glutamate); 30010-41-4 (aspartate); 7704-67-8 (thiocyante); 1264-62-6 (Ethylsuccinate); 914076-30-5 (ethyl carbonate); 55224-05-0 (cyclocarbonate); 33396-29-1 (Erythromycin A enol ether); 59319-72-1 (Erythromycin A dihydrate)

Appearance
White to off-white solid powder; Colorless solution (in ethanol, 100mg/mL)
LogP
2.97
tPSA
188.98
SMILES
CC[C@H]1OC(=O)[C@H](C)[C@@H](O[C@H]2C[C@@](C)(OC)[C@@H](O)[C@H](C)O2)[C@H](C)[C@@H](O[C@@H]3O[C@H](C)C[C@@H]([C@H]3O)N(C)C)[C@](C)(O)C[C@@H](C)C(=O)[C@H](C)[C@H]4OC(=O)O[C@]14C
InChi Key
NKLGIWNNVDPGCA-ZDYKNUMJSA-N
InChi Code
InChI=1S/C38H65NO14/c1-14-25-38(10)32(52-35(44)53-38)20(4)27(40)18(2)16-36(8,45)31(51-34-28(41)24(39(11)12)15-19(3)47-34)21(5)29(22(6)33(43)49-25)50-26-17-37(9,46-13)30(42)23(7)48-26/h18-26,28-32,34,41-42,45H,14-17H2,1-13H3/t18-,19-,20+,21+,22-,23+,24+,25-,26+,28-,29+,30+,31-,32-,34+,36-,37-,38-/m1/s1
Chemical Name
(3aR,4R,7R,8S,9S,10R,11R,13R,15R,15aR)-10-(((2S,3R,4S,6R)-4-(dimethylamino)-3-hydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)-4-ethyl-11-hydroxy-8-(((2R,4R,5S,6S)-5-hydroxy-4-methoxy-4,6-dimethyltetrahydro-2H-pyran-2-yl)oxy)-3a,7,9,11,13,15-hexamethyldecahydro-6H-[1,3]dioxolo[4,5-c][1]oxacyclotetradecine-2,6,14(7H)-trione
Synonyms
Erythromycin A; Erythromycin A 11,12-carbonate; Erythromycin A cyclic carbonate; Davercin;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : 100 mg/mL (131.59 mM)
Ethanol : 100 mg/mL
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 3 mg/mL (3.95 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 30.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 3 mg/mL (3.95 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 30.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 3 mg/mL (3.95 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 30.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


Solubility in Formulation 4: 10% DMSO+40% PEG300+5% Tween-80+45% Saline: ≥ 3 mg/mL (3.95 mM)

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.3159 mL 6.5796 mL 13.1593 mL
5 mM 0.2632 mL 1.3159 mL 2.6319 mL
10 mM 0.1316 mL 0.6580 mL 1.3159 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Biological Data
  • From Erythromycin A to other macrocyclic antibiotics (roxithromycin, dirithromycin, clarithromycin, etc.), including azithromycin, a “blockbuster” anti-infective drug . Antibiotics (Basel) . 2016 Sep 1;5(3):29.
Contact Us