yingweiwo

Derazantinib racemate

Alias: AR-Q087; ARQ 087; ARQ087; AR-Q087 racemate; Derazantinib Racemate
Cat No.:V3694 Purity: ≥98%
Derazantinib Racemate is the racemic mixture of derazantinib which is formerly known as ARQ 087 and is a novel, orally bioavailable, ATP competitive, small molecule, multi-kinase inhibitor with potent in vitro and in vivo activity against FGFR (fibroblast growth factor receptor) addicted cell lines and tumors withIC50s of 4.5, 1.8, and 4.5 nM forFGFR1-3 respectively in biochemical assay, IC50 values of 1.8 nM for FGFR2, and 4.5 nM for FGFR1 and 3.
Derazantinib racemate
Derazantinib racemate Chemical Structure CAS No.: 2309668-44-6
Product category: FGFR
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
25mg
50mg
100mg
Other Sizes

Other Forms of Derazantinib racemate:

  • Derazantinib (ARQ-087)
  • Derazantinib dihydrochloride
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Derazantinib Racemate is the racemic mixture of derazantinib which is formerly known as ARQ 087 and is a novel, orally bioavailable, ATP competitive, small molecule, multi-kinase inhibitor with potent in vitro and in vivo activity against FGFR (fibroblast growth factor receptor) addicted cell lines and tumors with IC50s of 4.5, 1.8, and 4.5 nM for FGFR1-3 respectively in biochemical assay, IC50 values of 1.8 nM for FGFR2, and 4.5 nM for FGFR1 and 3. The response to ARQ 087 treatment demonstrated that it inhibited the auto-phosphorylation of FGFR2 and other proteins downstream in the FGFR pathway (FRS2α, AKT, and ERK) in cells. Research on cell proliferation showed that ARQ 087 exhibited anti-proliferative activity in cell lines with FGFR dysregulation, encompassing mutations, fusions, and amplifications. Research on cell cycles in cell lines expressing high levels of FGFR2 protein revealed a positive correlation between the G1 cell cycle arrest induced by ARQ 087 and the subsequent induction of apoptosis. Furthermore, in FGFR2 modified SNU-16 and NCI-H716 xenograft tumor models with gene amplifications and fusions, ARQ 087 was successful in suppressing tumor growth in vivo. A subcohort of patients with intrahepatic cholangiocarcinoma who have been found to have FGFR2 gene fusions is part of the phase 1/2 clinical trial ongoing research on ARQ 087 (NCT01752920).

Biological Activity I Assay Protocols (From Reference)
ln Vitro
Derazantinib, formerly known as ARQ 087, is a novel, orally bioavailable, ATP competitive, small molecule, multi-kinase inhibitor with strong in vivo and in vitro activity against tumors and cell lines addicted to the fibroblast growth factor receptor (FGFR). In a biochemical assay, the inhibitor's IC50 values were 1.8 nM for FGFR2, 4.5 nM for FGFR1, and 4.5 nM for FGFR3. The results of treating cells with ARQ 087 showed that it inhibited the auto-phosphorylation of FGFR2 and other proteins (FRS2α, AKT, and ERK) downstream in the FGFR pathway. ARQ 087 has been shown in cell lines driven by FGFR dysregulation, including amplifications, fusions, and mutations, to exhibit anti-proliferative activity. A positive correlation was observed between the induction of apoptosis and the G1 cell cycle arrest induced by ARQ 087 in cell lines that had high levels of FGFR2 protein, according to cell cycle studies. Furthermore, FGFR2 modified SNU-16 and NCI-H716 xenograft tumor models with gene amplifications and fusions showed that ARQ 087 was efficacious in suppressing tumor growth in vivo. A subcohort of patients with intrahepatic cholangiocarcinoma who have been found to have FGFR2 gene fusions is part of the phase 1/2 clinical trial ongoing research on ARQ 087 (NCT01752920).
ln Vivo
Derazantinib is efficient in preventing the growth of tumors in xenograft tumor models with gene fusions and amplifications that have FGFR2 altered, SNU-16, and NCI-H716. With Derazantinib-injected wings, the majority of embryos (81.3%) display aberrant external phenotypes, which may be caused by inhibition of limb bud mesenchyme proliferation. The ulna and radius are smaller or absent altogether, and the wings are shorter and thinner, with a skeletal phenotype characteristic of FGFR inhibition.
Enzyme Assay
Derazantinib is titrated in DMSO using a three-fold dilution scheme, and the final DMSO concentration is achieved by diluting the mixture ten times more in deionized water. Each reaction plate well receives a volume (2.5 μL) of these dilutions or vehicle. Assay buffer containing FGFR1 or FGFR2 is added to each well in a volume of 17.5 μL, resulting in a final concentration of 0.50 or 0.25 nM, respectively. Following a 30-minute pre-incubation phase, ATP and substrate are added to assay buffer (5 μL) to achieve final concentrations of 80 nM biotinylated-PYK2 and 0-1,000 μM ATP in a final reaction volume of 25 μL. After incubating the plates for 60 minutes at room temperature, 10 μL of a stop/detection mixture made in assay buffer with EDTA is added to the plates to stop them in the dark.
Cell Assay
Cells are seeded at 3000-5000 cells per well with 130 μL media in 96-well tissue culture treated plates. The cells are incubated overnight and subsequently treated with 3-fold serial dilutions of Derazantinib starting at 100 μM. The cells are returned to a 37°C humidified incubator for 72 hours. Cell proliferation is measured using MTS assay.
Animal Protocol
25, 50,75, 100, 150 mg/kg
Mouse with BaF3/FGFR2, SNU-16, and NCI-H716, xenograft models
References

[1]. Bone . 2017 Dec:105:57-66.

[2]. PLoS One . 2016 Sep 14;11(9):e0162594.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C29H29FN4O
Molecular Weight
468.5652
Exact Mass
468.232
CAS #
2309668-44-6
Related CAS #
Derazantinib;1234356-69-4;Derazantinib dihydrochloride;1821329-75-2
PubChem CID
67541698
Appearance
White to yellow solid
LogP
5.3
Hydrogen Bond Donor Count
2
Hydrogen Bond Acceptor Count
6
Rotatable Bond Count
9
Heavy Atom Count
35
Complexity
638
Defined Atom Stereocenter Count
0
InChi Key
KPJDVVCDVBFRMU-UHFFFAOYSA-N
InChi Code
InChI=1S/C29H29FN4O/c1-35-16-15-31-14-13-20-7-6-8-22(17-20)33-29-32-19-21-18-26(24-10-4-5-12-27(24)30)23-9-2-3-11-25(23)28(21)34-29/h2-12,17,19,26,31H,13-16,18H2,1H3,(H,32,33,34)
Chemical Name
6-(2-fluorophenyl)-N-[3-[2-(2-methoxyethylamino)ethyl]phenyl]-5,6-dihydrobenzo[h]quinazolin-2-amine
Synonyms
AR-Q087; ARQ 087; ARQ087; AR-Q087 racemate; Derazantinib Racemate
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: ~94 mg/mL (~199 mM)
Water: <1mg/mL
Ethanol: <1mg/mL
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.1342 mL 10.6708 mL 21.3415 mL
5 mM 0.4268 mL 2.1342 mL 4.2683 mL
10 mM 0.2134 mL 1.0671 mL 2.1342 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Biological Data
  • Derazantinib racemate

    Mode of FGFR inhibition for ARQ 087.2016 Sep 14;11(9):e0162594.

  • Derazantinib racemate

    Fig 2. ARQ 087 inhibits FGFR phosphorylation.

    Derazantinib racemate

    ARQ 087 arrests cells in the G1 cell cycle phase and induces apoptosis.2016 Sep 14;11(9):e0162594.

  • Derazantinib racemate

    ARQ 087 inhibits the FGFR pathway in cancer cell lines.

    Derazantinib racemate

    ARQ 087 inhibits the FGFR pathway in xenograft tumors.2016 Sep 14;11(9):e0162594.

  • Derazantinib racemate

    ARQ 087 activity in tumor growth models.2016 Sep 14;11(9):e0162594.

  • Derazantinib racemate

    Animal weights in BaF3/FGFR2 animals dosed with ARQ 087.2016 Sep 14;11(9):e0162594.

Contact Us