yingweiwo

Deruxtecan

Alias: Deruxtecan; DS-8201a; DS8201a; DX-8951 derivative; Trastuzumab deruxtecan; DS 8201a; exatecan derivative; DX 8951; DX8951; Deruxtecan; 1599440-13-7; Mc-ggfg-dxd(1); 5SEB972CO4; N-((S)-10-Benzyl-1-(((1S,9S)-9-ethyl-5-fluoro-9-hydroxy-4-methyl-10,13-dioxo-2,3,9,10,13,15-hexahydro-1H,12H-benzo[de]pyrano[3',4':6,7]indolizino[1,2-b]quinolin-1-yl)amino)-1,6,9,12,15-pentaoxo-3-oxa-5,8,11,14-tetraazahexadecan-16-yl)-6-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)hexanamide; 6-(2,5-dioxopyrrol-1-yl)-N-[2-[[2-[[(2S)-1-[[2-[[2-[[(10S,23S)-10-ethyl-18-fluoro-10-hydroxy-19-methyl-5,9-dioxo-8-oxa-4,15-diazahexacyclo[14.7.1.02,14.04,13.06,11.020,24]tetracosa-1,6(11),12,14,16,18,20(24)-heptaen-23-yl]amino]-2-oxoethoxy]methylamino]-2-oxoethyl]amino]-1-oxo-3-phenylpropan-2-yl]amino]-2-oxoethyl]amino]-2-oxoethyl]hexanamide; Deruxtecan [USAN]; UNII-5SEB972CO4;
Cat No.:V4653 Purity: = 98.73%
Deruxtecan (DS-8201a; DS8201a; exatecan analog; DX-8951 analog), a drug-linker conjugate for antibody-drug conjugate (ADC, Patritumab deruxtecan orU3-1402), is a novel, potent toxin and linker moiety of DS-8201.
Deruxtecan
Deruxtecan Chemical Structure CAS No.: 1599440-13-7
Product category: Drug-Linker Conjugates for ADC
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
5mg
10mg
25mg
50mg
100mg
Other Sizes

Other Forms of Deruxtecan:

  • Exatecan mesylate (DX8951)
  • Deruxtecan-d6
  • Exatecan mesylate dihydrate (DX-8951 mesylate dihydrate)
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Purity: = 98.73%

Product Description

Deruxtecan (DS-8201a; DS8201a; exatecan analog; DX-8951 analog), a drug-linker conjugate for antibody-drug conjugate (ADC, Patritumab deruxtecan or U3-1402), is a novel, potent toxin and linker moiety of DS-8201. Antibody-drug conjugates deliver anticancer agents selectively and efficiently to tumor tissue and have significant antitumor efficacy with a wide therapeutic window. DS-8201a is a human epidermal growth factor receptor 2 (HER2)-targeting antibody-drug conjugate prepared using a novel linker-payload system with a potent topoisomerase I inhibitor, exatecan derivative (DX-8951 derivative, DXd). It was effective against trastuzumab emtansine (T-DM1)-insensitive patient-derived xenograft models with both high and low HER2 expression. In this study, the bystander killing effect of DS-8201a was evaluated and compared with that of T-DM1. We confirmed that the payload of DS-8201a, DXd (1), was highly membrane-permeable whereas that of T-DM1, Lys-SMCC-DM1, had a low level of permeability. Under a coculture condition of HER2-positive KPL-4 cells and negative MDA-MB-468 cells in vitro, DS-8201a killed both cells, whereas T-DM1 and an antibody-drug conjugate with a low permeable payload, anti-HER2-DXd (2), did not. In vivo evaluation was carried out using mice inoculated with a mixture of HER2-positive NCI-N87 cells and HER2-negative MDA-MB-468-Luc cells by using an in vivo imaging system. In vivo, DS-8201a reduced the luciferase signal of the mice, indicating suppression of the MDA-MB-468-Luc population; however, T-DM1 and anti-HER2-DXd (2) did not. Furthermore, it was confirmed that DS-8201a was not effective against MDA-MB-468-Luc tumors inoculated at the opposite side of the NCI-N87 tumor, suggesting that the bystander killing effect of DS-8201a is observed only in cells neighboring HER2-positive cells, indicating low concern in terms of systemic toxicity. These results indicated that DS-8201a has a potent bystander effect due to a highly membrane-permeable payload and is beneficial in treating tumors with HER2 heterogeneity that are unresponsive to T-DM1.

Biological Activity I Assay Protocols (From Reference)
Targets
Camptothecins; TOP I; topoisomerase I
ln Vitro

Antibody-drug conjugates deliver anticancer agents selectively and efficiently to tumor tissue and have significant antitumor efficacy with a wide therapeutic window[2]. The antitumor activity of [fam-] trastuzumab deruxtecan for CRC with five CRC cell lines that possess different biological characteristics was investigated. The expression of HER2 at both mRNA and protein levels in these various cell lines was first examined. Immunoblot analysis and RT and real-time polymerase chain reaction (PCR) analysis revealed that the amounts of HER2 protein and HER2 mRNA were much smaller in all the CRC cell lines than in NCI-N87 cells. [fam-] trastuzumab deruxtecan attenuated the viability of NCI-N87 cells, consistent with previous results, whereas all five CRC cell lines showed resistance to this agent. These findings suggested that the expression level of HER2 protein might determine sensitivity to [fam-] trastuzumab deruxtecan

ln Vivo
The efficacy of [fam-] trastuzumab deruxtecan in HER2-expressing xenograft tumor models was tested. It was first confirmed that HER2 protein expression levels by immunohistochemistry (IHC) in subcutaneous tumors formed in nude mice by HCT116-Mock, HCT116-H2L or HCT116-H2H cells. Administration of [fam-] trastuzumab deruxtecan at a dose of 3.0 mg/kg markedly inhibited the growth of tumors formed by HCT116-H2L or HCT116-H2H cells but not that of those formed by HCT116-Mock cells. The extents of the inhibition by [fam-] trastuzumab deruxtecan were 60 and 93% compared to PBS vehicle for HCT116-H2L and HCT116-H2H cells, respectively, on day 24. Treatment with [fam-] trastuzumab deruxtecan had no effect on body weight in any of the three groups of mice. These findings thus indicated that the sensitivity of tumors to [fam-] trastuzumab deruxtecan in xenograft models is dependent on HER2 expression level and that such treatment is not associated with overt toxicity.
Enzyme Assay
Parallel artificial membrane permeability assay (PAMPA) was carried out using a Freedom EVO200 system (Tecan, Männedorf, Switzerland). The filter membrane of the acceptor plate (Stirwell PAMPA Sandwich; Pion, Billerica, MA, USA) was coated with GIT‐0 lipid solution (Pion). Each compound solution in DMSO (10 mM) was added to Prisma HT buffer (Pion) to obtain 5‐μM donor solutions (containing 0.05% DMSO, pH 5.0 and pH 7.4), and then placed on a donor plate. The acceptor plate was filled with an acceptor sink buffer (Pion). The donor plate was stacked onto the acceptor plate and incubated for 4 h at 25°C. After incubation, the concentrations of compounds in both plates were measured by an LC‐MS/MS system (API 4000). The permeability coefficient (Peff; 10−6 cm/s) was calculated using PAMPA Evolution DP software (Pion).[1]
Cell Assay
Cells were seeded in a 96‐well plate at 1000 cells/well for KPL‐4 and 2000 cells/well for MDA‐MB‐468. After overnight incubation, a serially diluted solution of each ADC was added. Cell viability was evaluated after 5 days using a CellTiter‐Glo luminescent cell viability assay from Promega (Madison, WI, USA) according to the manufacturer's instructions. For coculture study, KPL‐4 and MDA‐MB‐468 cells were seeded in a 6‐well plate at 1 × 105 cells and 3 × 105 cells, respectively, in 2 mL/well culture medium. After overnight incubation, the supernatant was removed from the plate and each ADC diluent (10 nM) was added at 6 mL/well. Viable cells were detached from the plate after 5 days of culture, and the cell number in each well was determined using a cell counter. In order to determine the ratio of KPL‐4 and MDA‐MD‐468 cells of the total viable cells, the cells were stained with anti‐HER2/nue FITC (Becton, Dickinson and Company, Franklin Lakes, NJ, USA) and incubated on ice for 20 min. After washing, fluorescent signals of 2 × 104 stained cells were measured using a flow cytometer. Based on the number and ratio of HER2‐positive and HER2‐negative cells in each treatment well, the number of KPL‐4 or MDA‐MB‐468 cells was calculated.[1]
Animal Protocol
In vivo xenograft studies
All in vivo studies were carried out in accordance with the local guidelines of the Institutional Animal Care and Use Committee. Specific pathogen‐free female CAnN.Cg‐Foxn1nu/CrlCrlj mice (BALB/c nude mice) aged 5 weeks were purchased from Charles River Laboratories Japan Inc. (Yokohama, Japan) All models were established by s.c. inoculation in the flanks of the mice. NCI‐N87 and MDA‐MB‐468‐Luc models were established by injecting 5 × 106 and 1 × 107 cells suspended in a Matrigel matrix, respectively. After 6 days for NCI‐N87, and 9 days for MDA‐MB‐468‐Luc models, the tumor‐bearing mice were randomized into treatment and control groups based on the tumor volume, and dosing initiated (day 0). Each ADC was given i.v. to the mice at a dose of 3 or 10 mg/kg, and a volume of 10 mL/kg. As a vehicle, ABS buffer (10 mM acetate buffer, 5% sorbitol, pH 5.5) was given at the same volume as the ADCs. The tumor volume was defined as 1/2 × length × width2.[1]
In vivo luciferase imaging
Seven days after inoculating the mixture of 5 × 106 NCI‐N87 cells and 1 × 107 MDA‐MB‐468‐Luc cells suspended in the Matrigel matrix into the right flank of the mice at a total volume of 100 μL, the tumor‐bearing mice were randomized into treatment and control groups based on the tumor volume, and dosing initiated (day 0). Each ADC or the vehicle was given i.v. to the mice. Luciferase activity of each mouse was measured using an in vivo imaging system (IVIS 200 Imaging System; PerkinElmer Waltham, MA, USA) twice a week in parallel with the measurement of tumor length 10 min after administering 150 mg/kg luciferin i.v. The amount of luminescence was analyzed using analysis software as average radiance (p/s/cm2/sr). For another study, MDA‐MB‐468‐Luc cells at a density of 1.5 × 107 cells were inoculated into the left flank of the mice in addition to the inoculation of the mixture into the right flank. Seven days after inoculation, dosing and evaluation were undertaken in a similar manner as described above.[1]
References

[1]. Bystander killing effect of DS-8201a, a novel anti-human epidermal growth factor receptor 2 antibody-drug conjugate, in tumors with human epidermal growth factor receptor 2 heterogeneity. Cancer Sci. 2016 Jul;107(7):1039-46.

[2]. METHOD FOR SELECTIVELY MANUFACTURING ANTIBODY-DRUG CONJUGATE. WO2017002776A1.

Additional Infomation
Antibody-drug conjugates deliver anticancer agents selectively and efficiently to tumor tissue and have significant antitumor efficacy with a wide therapeutic window. DS-8201a is a human epidermal growth factor receptor 2 (HER2)-targeting antibody-drug conjugate prepared using a novel linker-payload system with a potent topoisomerase I inhibitor, exatecan derivative (DX-8951 derivative, DXd). It was effective against trastuzumab emtansine (T-DM1)-insensitive patient-derived xenograft models with both high and low HER2 expression. In this study, the bystander killing effect of DS-8201a was evaluated and compared with that of T-DM1. We confirmed that the payload of DS-8201a, DXd (1), was highly membrane-permeable whereas that of T-DM1, Lys-SMCC-DM1, had a low level of permeability. Under a coculture condition of HER2-positive KPL-4 cells and negative MDA-MB-468 cells in vitro, DS-8201a killed both cells, whereas T-DM1 and an antibody-drug conjugate with a low permeable payload, anti-HER2-DXd (2), did not. In vivo evaluation was carried out using mice inoculated with a mixture of HER2-positive NCI-N87 cells and HER2-negative MDA-MB-468-Luc cells by using an in vivo imaging system. In vivo, DS-8201a reduced the luciferase signal of the mice, indicating suppression of the MDA-MB-468-Luc population; however, T-DM1 and anti-HER2-DXd (2) did not. Furthermore, it was confirmed that DS-8201a was not effective against MDA-MB-468-Luc tumors inoculated at the opposite side of the NCI-N87 tumor, suggesting that the bystander killing effect of DS-8201a is observed only in cells neighboring HER2-positive cells, indicating low concern in terms of systemic toxicity. These results indicated that DS-8201a has a potent bystander effect due to a highly membrane-permeable payload and is beneficial in treating tumors with HER2 heterogeneity that are unresponsive to T-DM1.[1]
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C52H56FN9O13
Molecular Weight
1034.05195617676
Exact Mass
1,033.40
Elemental Analysis
C, 60.40; H, 5.46; F, 1.84; N, 12.19; O, 20.11
CAS #
1599440-13-7
Related CAS #
Exatecan mesylate;169869-90-3;Deruxtecan-d6;2760715-89-5;Deruxtecan-d5;Exatecan mesylate dihydrate;197720-53-9
PubChem CID
118305111
Appearance
White to yellow solid powder
Density
1.48±0.1 g/cm3
Boiling Point
1491.1±65.0 °C
LogP
-0.4
tPSA
301Ų
SMILES
CC[C@@]1(O)C(OCC2=C1C=C3N(C2=O)CC(C3=NC4=CC(F)=C5C)=C6C4=C5CC[C@@H]6NC(COCNC(CNC([C@@H](NC(CNC(CNC(CCCCCN7C(C=CC7=O)=O)=O)=O)=O)CC8=CC=CC=C8)=O)=O)=O)=O
InChi Key
WXNSCLIZKHLNSG-MCZRLCSDSA-N
InChi Code
InChI=1S/C52H56FN9O13/c1-3-52(73)33-19-38-48-31(24-62(38)50(71)32(33)25-75-51(52)72)47-35(14-13-30-28(2)34(53)20-36(60-48)46(30)47)58-43(67)26-74-27-57-41(65)22-56-49(70)37(18-29-10-6-4-7-11-29)59-42(66)23-55-40(64)21-54-39(63)12-8-5-9-17-61-44(68)15-16-45(61)69/h4,6-7,10-11,15-16,19-20,35,37,73H,3,5,8-9,12-14,17-18,21-27H2,1-2H3,(H,54,63)(H,55,64)(H,56,70)(H,57,65)(H,58,67)(H,59,66)/t35-,37-,52-/m0/s1
Chemical Name
Glycinamide, N-[6-(2,5-dihydro-2,5-dioxo-1H-pyrrol-1-yl)-1-oxohexyl]glycylglycyl-L-phenylalanyl-N-[[2-[[(1S,9S)-9-ethyl-5-fluoro-2,3,9,10,13,15-hexahydro-9-hydroxy-4-methyl-10,13-dioxo-1H,12Hbenzo[de]pyrano[3',4':6,7]indolizino[1,2-b]quinolin-1-yl]amino]-2-oxoethoxy]methyl]-
Synonyms
Deruxtecan; DS-8201a; DS8201a; DX-8951 derivative; Trastuzumab deruxtecan; DS 8201a; exatecan derivative; DX 8951; DX8951; Deruxtecan; 1599440-13-7; Mc-ggfg-dxd(1); 5SEB972CO4; N-((S)-10-Benzyl-1-(((1S,9S)-9-ethyl-5-fluoro-9-hydroxy-4-methyl-10,13-dioxo-2,3,9,10,13,15-hexahydro-1H,12H-benzo[de]pyrano[3',4':6,7]indolizino[1,2-b]quinolin-1-yl)amino)-1,6,9,12,15-pentaoxo-3-oxa-5,8,11,14-tetraazahexadecan-16-yl)-6-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)hexanamide; 6-(2,5-dioxopyrrol-1-yl)-N-[2-[[2-[[(2S)-1-[[2-[[2-[[(10S,23S)-10-ethyl-18-fluoro-10-hydroxy-19-methyl-5,9-dioxo-8-oxa-4,15-diazahexacyclo[14.7.1.02,14.04,13.06,11.020,24]tetracosa-1,6(11),12,14,16,18,20(24)-heptaen-23-yl]amino]-2-oxoethoxy]methylamino]-2-oxoethyl]amino]-1-oxo-3-phenylpropan-2-yl]amino]-2-oxoethyl]amino]-2-oxoethyl]hexanamide; Deruxtecan [USAN]; UNII-5SEB972CO4;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

Note: (1) This product is not stable in solution, please use freshly prepared working solution for optimal results. (2) This product requires protection from light (avoid light exposure) during transportation and storage.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~35 mg/mL (~33.85 mM)
Solubility (In Vivo)
Solubility in Formulation 1: 1.75 mg/mL (1.69 mM) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), suspension solution; with sonication.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 17.5 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: 1.75 mg/mL (1.69 mM) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), suspension solution; with ultrasonication.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 17.5 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 1.75 mg/mL (1.69 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 17.5 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


Solubility in Formulation 4: 10% DMSO+ 40% PEG300+ 5% Tween-80+ 45% saline: 1.75 mg/mL (1.69 mM)

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 0.9671 mL 4.8354 mL 9.6707 mL
5 mM 0.1934 mL 0.9671 mL 1.9341 mL
10 mM 0.0967 mL 0.4835 mL 0.9671 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT04644237 Active, not recruiting Drug: Trastuzumab
deruxtecan
Non-Small Cell Lung Cancer Daiichi Sankyo,Inc. March 19, 2021 Phase 2
NCT04619004 Active, not recruiting Drug: Patritumab
Deruxtecan (Fixed dose)
Non-Small Cell Lung
Cancer Metastatic
Daiichi Sankyo,Inc. February 2, 2021 Phase 2
NCT05458401 Recruiting Drug: Trastuzumab
deruxtecan
HER2-positive Breast Cancer Daiichi Sankyo,Inc. November 11, 2022
Biological Data
Contact Us