Size | Price | Stock | Qty |
---|---|---|---|
1mg |
|
||
5mg |
|
||
10mg |
|
||
25mg |
|
||
50mg |
|
||
100mg |
|
||
250mg |
|
||
Other Sizes |
|
Purity: ≥98%
Desidustat is an antianaemic drug candidate under investigation for the treatment of anemia of chronic kidney disease. It acts as an inhibitor of HIF hydroxylase.
ln Vivo |
In vivo, desindusat (oral; 10-100 mg/kg) exhibits good effectiveness [1].
|
---|---|
Animal Protocol |
Animal/Disease Models: C57 mice[1]
Doses: 10, 30, 50, 100 mg/kg; 20 mg/kg Route of Administration: po (oral gavage); oral administration, one time/day for 7 days. Experimental Results: EPO and Hb levels demonstrated significant rising. |
References | |
Additional Infomation |
Desidustat is a N-acyl-amino acid.
Desidustat is under investigation in clinical trial NCT04012957 (Desidustat in the Treatment of Anemia in CKD). Desidustat is an orally bioavailable, hypoxia-inducible factor prolyl hydroxylase (HIF-PH) inhibitor (HIF-PHI), with potential anti-anemic and anti-inflammatory activities. Upon administration, desidustat binds to and inhibits HIF-PH, an enzyme responsible for the degradation of transcription factors in the HIF family under normal oxygen conditions. This prevents HIF breakdown and promotes HIF activity. Increased HIF activity leads to an increase in endogenous erythropoietin production, thereby enhancing erythropoiesis. It also reduces the expression of the peptide hormone hepcidin, improves iron availability, and boosts hemoglobin (Hb) levels. HIF regulates the expression of genes in response to reduced oxygen levels, including genes required for erythropoiesis and iron metabolism. In addition, HIF 1-alpha (HIF1A) may play a role in reducing inflammation during acute lung injury (ALI) through HIF-dependent control of glucose metabolism in the alveolar epithelium. Mechanism of Action The small molecule hypoxia-inducible factor, desidustat, inhibits the prolyl hydrozylase and stimulates erythropoiesis. It is currently being investigated against anemia of inflammation and COVID-19. |
Molecular Formula |
C16H16N2O6
|
---|---|
Molecular Weight |
332.308044433594
|
Exact Mass |
332.1
|
CAS # |
1616690-16-4
|
Related CAS # |
1616690-16-4;
|
PubChem CID |
75593290
|
Appearance |
White to off-white solid powder
|
Density |
1.5±0.1 g/cm3
|
Index of Refraction |
1.676
|
LogP |
0.54
|
Hydrogen Bond Donor Count |
3
|
Hydrogen Bond Acceptor Count |
6
|
Rotatable Bond Count |
6
|
Heavy Atom Count |
24
|
Complexity |
583
|
Defined Atom Stereocenter Count |
0
|
InChi Key |
IKRKQQLJYBAPQT-UHFFFAOYSA-N
|
InChi Code |
InChI=1S/C16H16N2O6/c19-12(20)7-17-15(22)13-14(21)10-3-1-2-4-11(10)18(16(13)23)24-8-9-5-6-9/h1-4,9,21H,5-8H2,(H,17,22)(H,19,20)
|
Chemical Name |
2-[[1-(cyclopropylmethoxy)-4-hydroxy-2-oxoquinoline-3-carbonyl]amino]acetic acid
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
DMSO : ~10 mg/mL (~30.09 mM)
|
---|---|
Solubility (In Vivo) |
Solubility in Formulation 1: ≥ 1 mg/mL (3.01 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 10.0 mg/mL clear DMSO stock solution to 400 μL of PEG300 and mix evenly; then add 50 μL of Tween-80 to the above solution and mix evenly; then add 450 μL of normal saline to adjust the volume to 1 mL. Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution. Solubility in Formulation 2: ≥ 1 mg/mL (3.01 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution. For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 10.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 3.0092 mL | 15.0462 mL | 30.0924 mL | |
5 mM | 0.6018 mL | 3.0092 mL | 6.0185 mL | |
10 mM | 0.3009 mL | 1.5046 mL | 3.0092 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.