Size | Price | Stock | Qty |
---|---|---|---|
5mg |
|
||
10mg |
|
||
25mg |
|
||
50mg |
|
||
100mg |
|
||
250mg |
|
||
500mg |
|
||
Other Sizes |
|
Purity: ≥98%
Targets |
Natural product; antifungal
|
---|---|
ln Vitro |
A quaternary benzo[c]phenanthridine alkaloid chelerythrine displays a wide range of biological activities including cytotoxicity to normal and cancer cells. In contrast, less is known about the biological activity of dihydrochelerythrine, a product of chelerythrine reduction. We examined the cytotoxicity of chelerythrine and dihydrochelerythrine in human promyelocytic leukemia HL-60 cells. After 4h of treatment, chelerythrine induced a dose-dependent decrease in the cell viability with IC50 of 2.6 microM as shown by MTT reduction assay. Dihydrochelerythrine appeared to be less cytotoxic since the viability of cells exposed to 20 microM dihydrochelerythrine for 24h was reduced only to 53%. Decrease in the viability induced by both alkaloids was accompanied by apoptotic events including the dissipation of mitochondrial membrane potential, activation of caspase-9 and -3, and appearance of cells with sub-G1 DNA. Moreover, chelerythrine, but not dihydrochelerythrine, elevated the activity of caspase-8. A dose-dependent induction of apoptosis and necrosis by chelerythrine and dihydrochelerythrine was confirmed by annexin V/propidium iodide dual staining flow cytometry. Besides, both alkaloids were found to induce accumulation of HL-60 cells in G1 phase of the cell cycle. We conclude that both chelerythrine and dihydrochelerythrine affect cell cycle distribution, activate mitochondrial apoptotic pathway, and induce apoptosis and necrosis in HL-60 cells[2].
|
ln Vivo |
The antifungal activities of dihydrosanguinarine and dihydrochelerythrine, isolated from the leaves of Macleaya microcarpa, were evaluated on 12 plant pathogenic fungi; the two compounds exhibited the highest antifungal activity against Botrytis cinerea Pers. Among the 11 tested plant pathogenic fungi in vitro, the two compounds showed the highest antifungal activity against B. cinerea Pers, with 95.16% and 98.32% mycelial growth inhibition at 50 µg mL⁻¹, respectively. In addition, the two compounds inhibited spore germination in vitro in a concentration-dependent manner. They also showed potent protective and curative effects against Erysiphe graminis and B. cinerea in vivo. This is the first report on the antifungal activity of dihydrosanguinarine and dihydrochelerythrine against pathogenic plant fungi[1].
|
References | |
Additional Infomation |
Dihydrochelerythrine is a benzophenanthridine alkaloid.
Dihydrochelerythrine has been reported in Zanthoxylum simulans, Zanthoxylum ailanthoides, and other organisms with data available. |
Molecular Formula |
C21H19NO4
|
---|---|
Molecular Weight |
349.38
|
Exact Mass |
349.131
|
Elemental Analysis |
C, 72.19; H, 5.48; N, 4.01; O, 18.32
|
CAS # |
6880-91-7
|
PubChem CID |
485077
|
Appearance |
White to off-white solid
|
Density |
1.3±0.1 g/cm3
|
Boiling Point |
565.9±50.0 °C at 760 mmHg
|
Flash Point |
171.6±27.3 °C
|
Vapour Pressure |
0.0±1.5 mmHg at 25°C
|
Index of Refraction |
1.657
|
LogP |
4.56
|
Hydrogen Bond Donor Count |
0
|
Hydrogen Bond Acceptor Count |
5
|
Rotatable Bond Count |
2
|
Heavy Atom Count |
26
|
Complexity |
516
|
Defined Atom Stereocenter Count |
0
|
SMILES |
O1C([H])([H])OC2=C1C([H])=C1C(=C2[H])C([H])=C([H])C2C3C([H])=C([H])C(=C(C=3C([H])([H])N(C([H])([H])[H])C=21)OC([H])([H])[H])OC([H])([H])[H]
|
InChi Key |
ALZAZMCIBRHMFF-UHFFFAOYSA-N
|
InChi Code |
InChI=1S/C21H19NO4/c1-22-10-16-13(6-7-17(23-2)21(16)24-3)14-5-4-12-8-18-19(26-11-25-18)9-15(12)20(14)22/h4-9H,10-11H2,1-3H3
|
Chemical Name |
1,2-dimethoxy-12-methyl-12,13-dihydro-[1,3]dioxolo[4',5':4,5]benzo[1,2-c]phenanthridine
|
Synonyms |
12,13-Dihydrochelerythrine; Dihydrochelerythrine
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
DMSO : ~20.83 mg/mL (~59.62 mM)
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 2.8622 mL | 14.3111 mL | 28.6221 mL | |
5 mM | 0.5724 mL | 2.8622 mL | 5.7244 mL | |
10 mM | 0.2862 mL | 1.4311 mL | 2.8622 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.