yingweiwo

Dulaglutide (Trulicity; LY2189265)

Alias: Dulaglutide; GLP-1 moiety from Dulaglutide; 923950-08-7; Dulaglutide; 1197810-60-8; HPNPLWNTQBSMAJ-FBXRENMFSA-N; LY2189265
Cat No.:V41550 Purity: ≥98%
Dulaglutide (LY2189265) is a glucagon-like peptide-1 (GLP-1) receptor agonist (activator).
Dulaglutide (Trulicity; LY2189265)
Dulaglutide (Trulicity; LY2189265) Chemical Structure CAS No.: 923950-08-7
Product category: GCGR
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
25mg
50mg
Other Sizes

Other Forms of Dulaglutide (Trulicity; LY2189265):

  • GLP-1 moiety from Dulaglutide
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
Dulaglutide (LY2189265) is a glucagon-like peptide-1 (GLP-1) receptor agonist (activator). Dulaglutide may be utilized in the research into type 2 diabetes.
Biological Activity I Assay Protocols (From Reference)
Targets
GLP-1 receptor
ln Vitro
Dulaglutide (50 nM and 100 nM; 24 h) protects human aortic endothelial cells (HAECs) against oxidative stress caused by low-density lipoprotein (LDL) and inhibits its effects on mitochondria.
Dulaglutide ameliorated ox-LDL-induced oxidative stress and mitochondrial dysfunction.[1]
Dulaglutide suppressed ox-LDL-induced secretion of IL-1β, IL-6, MCP-1, and HMG-1.[1]
Dulaglutide suppressed ox-LDL-induced reduction of cell viability and release of LDH.[1]
Dulaglutide suppressed attachment of THP-1 to HAECs by inhibiting VCAM-1, E-selectin.[1]
Dulaglutide promoted the expression of KLF2 through inhibiting the activation of p53.[1]
ln Vivo
Dulaglutide (0, 0.05, 0.5, 1.5, or 5 mg/kg; s.c.; twice week, for 93 weeks) raises the incidence of thyroid C-cell hyperplasia and neoplasia in the rat carcinogenicity study[3]. The tumorigenic potential of dulaglutide was evaluated in rats and transgenic mice. Rats were injected sc twice weekly for 93 weeks with dulaglutide 0, 0.05, 0.5, 1.5, or 5 mg/kg corresponding to 0, 0.5, 7, 20, and 58 times, respectively, the maximum recommended human dose based on plasma area under the curve. Transgenic mice were dosed sc twice weekly with dulaglutide 0, 0.3, 1, or 3 mg/kg for 26 weeks. Dulaglutide effects were limited to the thyroid C-cells. In rats, diffuse C-cell hyperplasia and adenomas were statistically increased at 0.5 mg/kg or greater (P ≤ .01 at 5 mg/kg), and C-cell carcinomas were numerically increased at 5 mg/kg. Focal C-cell hyperplasia was higher compared with controls in females given 0.5, 1.5, and 5 mg/kg. In transgenic mice, no dulaglutide-related C-cell hyperplasia or neoplasia was observed at any dose; however, minimal cytoplasmic hypertrophy of C cells was observed in all dulaglutide groups. Systemic exposures decreased over time in mice, possibly due to an antidrug antibody response. In a 52-week study designed to quantitate C-cell mass and plasma calcitonin responses, rats received twice-weekly sc injections of dulaglutide 0 or 5 mg/kg. Dulaglutide increased focal C-cell hyperplasia; however, quantitative increases in C-cell mass did not occur. Consistent with the lack of morphometric changes in C-cell mass, dulaglutide did not affect the incidence of diffuse C-cell hyperplasia or basal or calcium-stimulated plasma calcitonin, suggesting that diffuse increases in C-cell mass did not occur during the initial 52 weeks of the rat carcinogenicity study [3].
Enzyme Assay
Assessment of reactive oxygen species (ROS) [1]
Intracellular ROS in HAECs was measured using the 2′,7′-dichlorodihydrofluorescein diacetate (DCFH-DA) staining. HAECs were stimulated with ox-LDL (100 μg/ml) in the presence or absence of dulaglutide at the concentrations of 50 and 100 nM for 24 h and washed 3 times with PBS. Cells were then loaded with 5 μM DCFH-DA for 15 min in darkness at 37 °C. Fluorescent signals were visualized using a Zeiss fluorescence microscope. Intracellular ROS was calculated using Image J software. Briefly, regions of interest (ROI) were defined in the fluorescent image, and the average number of cells present in the defined ROI was counted. The integrated density value (IDV) in the ROI was calculated and divided by the average number of cells. The results were used to represent the average level of intracellular ROS.
Reduced glutathione (GSH) assay [1]
Intracellular levels of reduced glutathione (GSH) in HAECs were determined using a fluorometric assay. HAECs were stimulated with ox-LDL (100 μg/ml) in the presence or absence of dulaglutide at the concentrations of 50 and 100 nM for 24 h. Cells were then collected in ice cold 5% meta-phosphoric acid (MPA). Cells were then sonicated and centrifuged at 14,000 × g for 5 min. Supernatant was incubated with an equal volume of OPAME in methanol and borate buffer and incubated for 15 min at RT. Fluorescent signals were recorded at 350 nm excitation and 420 nm emission.
Determination of mitochondrial membrane potential (MMP) [1]
Intracellular levels of MMP in HAECs were determined using tetramethylrhodamine methyl ester (TMRM) staining. HAECs were stimulated with ox-LDL (100 μg/ml) in the presence or absence of dulaglutide at the concentrations of 50 and 100 nM for 24 h. Cells were then washed 3 times with PBS and probed with 20 nmol/L TMRM. After incubation for 1 h at 37 °C, cells were washed 3 times and fluorescent signals were visualized using a Zeiss fluorescence microscope.
Cell Assay
Cell Line: Human aortic endothelial cells (HAECs)
Concentration: 50 nM, 100 nM
Incubation Time: 24 hous
Result: Suppressed ox-LDL-induced reduction of cell viability and release of lactate dehydrogenase (LDH).
Cellular adhesion assay [1]
HAECs were cultured to 80% confluence. Cells were stimulated with ox-LDL (100 μg/ml) in the presence or absence of dulaglutide at the concentrations of 50 and 100 nM for 24 h. A total of 2 × 105 THP-1 monocytes were stained with calcein acetoxymethyl ester for 30 min and incubated with HAECs for 2 h. Unattached THP-1 cells were washed away and attached THP-1 cells were visualized using a fluorescence microscope.
Assessment of cell viability [1]
HAECs were seeded into 6-well plates and stimulated with ox-LDL (100 μg/ml) in the presence or absence of dulaglutide at the concentrations of 50 and 100 nM for 24 h. After 3 gentle washes, 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) in phenol-free red medium at the final concentration of 5 mg/ml was added and incubated for 4 h at 37 °C in darkness, the product was dissolved with dimethyl sulfoxide (DMSO). OD value at 570 nm was measured to reflect the viability percentage.
Measurement of lactate dehydrogenase (LDH) release [1]
HAECs were seeded into 6-well plates and stimulated with ox-LDL (100 μg/ml) in the presence or absence of dulaglutide at the concentrations of 50 and 100 nM for 24 h. 50 μl supernatant was collected and mixed with 50 μl of the LDH assay reagent in a fresh 96-well plate. After incubation for 30 min in darkness, the reaction was stopped with 50 μl stop buffer. OD value at 490 nm was recorded to assess LDH release.
Animal Protocol
Rats and Transgenic mice
0, 0.05, 0.5, 1.5, or 5 mg/kg; 0, 0.3, 1, or 3 mg/kg
SC, twice week, for 93 weeks; SC, twice week, for 26 weeks
Plasma dulaglutide toxicokinetics [3]
Twenty-six-week mouse study [3]
Blood samples were collected on days 1, 85, and 176 of the dosing phase. Blood was collected from three animals per sex per group per time point. Blood was drawn before dosing and 4, 12, 24, 48, and 96 hours after dosing on days 1 and 176 and before dosing and 24 hours after dosing on day 85. Plasma samples were analyzed for dulaglutide concentrations using a validated ELISA method.

Microtiter plates were coated with mouse antihuman IgG (Fc) antibody. Dulaglutide standards, controls, and samples were prepared in mouse plasma. After the preparation, the samples were incubated on the coated plates for approximately 1.5 hours at room temperature. The dulaglutide complex on the plate was bound with a guinea pig anti-GLP-1 active antiserum and then detected using a goat anti-guinea pig IgG-horseradish peroxidase with tetramethyl benzidine substrate. The standard curve ranged from 0.25 to 125 ng/mL, with 2.0 and 30 ng/mL being the lower and upper limits of quantitation, respectively.
Ninety-three-week carcinogenicity per 52-week rat thyroid C-cell studies [3]
For the 93-week carcinogenicity study, blood was drawn (three rats per sex per group per time point) before dosing and 4, 12, 24, 48, and 96 hours after dosing on days 1 and 24 and before dosing and 24 hours after dosing at weeks 13, 26, 78, and 93. For the 52-week morphometry study, blood samples were collected (three rats per sex per group per time point) approximately 6 days after dosing at the time the animals were killed on days 94, 185, 276, and 374. Plasma samples for both studies were analyzed for dulaglutide concentrations using a validated ELISA method.

Microtiter plates were coated with monoclonal anti-GLP-1 antibody. Dulaglutide standards, controls, and samples were prepared in rat plasma. After the preparation, the samples were incubated on the coated plates for approximately 1.5 hours at room temperature. The dulaglutide complex on the plate was detected using a mouse antihuman IgG4-horseradish peroxidase antibody (Southern Biotech) with tetramethyl benzidine substrate. The standard curve ranged from 0.39 to 50 ng/mL, with 0.80 and 40 ng/mL being the lower and upper limits of quantitation, respectively.
Fifty-two-week rat thyroid C-cell study [3]
Microtiter plates were coated with mouse antihuman IgG (Fc) antibody. Dulaglutide standards, controls, and samples were prepared in rat plasma. After the preparation, the samples were incubated on the coated plates for approximately 1 hour at room temperature. The dulaglutide complex on the plate was bound with a mouse IgG2a kappa anti-GLP-1 antibody and then detected using a goat antimouse IgG2a-horseradish peroxidase with tetramethyl benzidine substrate. The standard curve ranged from 0.40 to 100 ng/mL, with 0.80 and 40 ng/mL being the lower and upper limits of quantitation, respectively.
Toxicity/Toxicokinetics
Twenty-six-week mouse study [3]
In-life phase [3]
Administration of dulaglutide had no effect on survival. No dulaglutide-related clinical signs were observed. Mean food consumption for males generally decreased for dulaglutide-treated mice compared with controls, resulting in correlative decreases in mean body weight (Supplemental Figures 1–4). Similar, but generally less prominent effects on food consumption were observed for the treated females but did not produce reductions in growth.

Plasma dulaglutide toxicokinetics [3]
Times to peak plasma concentration of dulaglutide were observed between 4 and 12 hours after dosing. Exposure to dulaglutide, as assessed by area under the curve (AUC) concentration and peak plasma concentration (Cmax) values, increased with increasing doses but was generally less than proportional with an increasing dose on day 176. Systemic exposure of dulaglutide was similar between males and females (Table 1). Plasma concentrations of dulaglutide on day 85 (not shown) and Cmax and AUC values on day 176 were generally 0.5-fold or less than the corresponding day 1 values (Table 1). The decreases in exposure over the duration of the study are likely due to dulaglutide antidrug antibody (ADA) formation; however, the specific determination of dulaglutide ADA was not conducted.

Anatomic pathology [3]
There were no detectable dulaglutide-related effects and no evidence of thyroid C-cell hyperplasia or neoplasia in the control or treated groups using routine hematoxylin and eosin-stained sections of the thyroid. In sections of thyroid stained with calcitonin, an increased C-cell cytoplasmic volume was detected in all treated groups given the test article and was recorded as C cells, cytoplasmic hypertrophy/increased calcitonin staining (Table 2). The severity was mild, and there was no qualitative increase in the number of thyroid C cells in dulaglutide-treated mice. Increased mortality and increased incidences of bronchiolar alveolar adenoma and carcinoma, squamous cell papilloma and carcinoma, and hemangioma and hemangiosarcoma were observed in the MNU-positive control animals, reflecting a typical response in this strain of mouse after MNU administration.
Ninety-three-week rat carcinogenicity study [3]
In-life phase [3]
Due to the low survival in the control animals (<20 animals/sex), the study was terminated during week 93 with the agreement of the Executive Carcinogenesis Assessment Committee of the FDA. However, sufficient numbers of animals survived to week 80 to adequately evaluate carcinogenicity. No specific dulaglutide-related cause of death was identified. Survival was numerically increased for both genders in all dulaglutide treatment groups and reached statistical significance (P ≤ .05) in the 0.5- and 5-mg/kg males and in the 0.05-, 0.5-, and 1.5-mg/kg females (Table 3). Compound-related decreases in mean body weight and mean food consumption compared with controls were generally dose dependent (Supplemental Figures 5–8).

Plasma dulaglutide toxicokinetics [3]
Mean times to peak plasma concentration values of dulaglutide were observed at 12 hours after dosing on day 1 and ranged between 12 and 48 hours at week 52. Exposure to dulaglutide, as assessed by AUC and Cmax values, increased with increasing dose from 0.05 to 5 mg/kg on all days evaluated (Table 1). Peak concentration (Cmax) and AUC0–96h values on day 1 and at week 52 were approximately dose proportional. The exposures were similar in male and female rats at all dose groups and days evaluated. Steady state appeared to have been achieved by week 13, and exposure was maintained through week 93. Values for Cmax and AUC0–96h were higher at week 52 than at day 1, indicating possible accumulation of dulaglutide in rat plasma after multiple dosing for 92 weeks. In addition, mean plasma dulaglutide concentrations for the toxicity groups at the time of week 93 study termination were generally similar to the mean concentrations observed for the respective toxicokinetic groups.

Anatomic pathology [3]
The incidence of thyroid C-cell adenoma was significantly (P ≤ .05) increased compared with controls in males and females at the dulaglutide 0.5-, 1.5-, and 5-mg/kg doses (Table 4). Animals given 5 mg/kg had a numerically higher dulaglutide-related incidence of thyroid C-cell carcinoma that did not reach statistical significance. The incidence of diffuse C-cell hyperplasia was significantly (P ≤ .05) higher compared with controls in males administered dulaglutide 1.5 mg/kg and 5 mg/kg and in females administered dulaglutide 5 mg/kg. The incidence of focal C-cell hyperplasia was higher compared with controls in females treated with dulaglutide 0.5, 1.5, and 5 mg/kg. The incidence of focal C-cell hyperplasia was lower in males treated with dulaglutide 0.5, 1.5, or 5 mg/kg, with a negative trend after the positive trend for an increase in the incidence of thyroid C-cell adenomas (Supplemental Figures 9 and 10).
Fifty-two-week rat thyroid C-cell study [3]
In-life phase [3]
No dulaglutide-related deaths or clinical signs were observed. Three control rats died within several minutes after receiving the CaCl2 dose on day 365 or 372 of the dosing phase. In addition, three control rats and two rats given 5 mg/kg died at unscheduled intervals. The cause of death was a hematopoietic neoplasm in one rat given 5 mg/kg; the cause of death in the other rats was undetermined.

Plasma dulaglutide toxicokinetics [3]
Plasma dulaglutide concentrations at interim times the animals were killed (6 d after the last dose on d 94, 185, 276, and 374) generally decreased as the study progressed, and there was considerable variability in the concentrations of dulaglutide on day 185. Plasma dulaglutide concentrations 13 days after the final dose (day 374) were below the quantifiable limit for 18 of the 19 animals given 5 mg/kg. One animal had a plasma concentration of 0.91 ng/mL. The decreases in exposure to dulaglutide over the duration of the study were likely due to the formation of antibodies; however, specific determination of dulaglutide ADA was not conducted. Although dulaglutide plasma concentrations generally decreased over the study, effects related to the pharmacology of dulaglutide [decreased food consumption and decreased body weight gain (Supplemental Figures 11 and 12)] were observed throughout the dosing phase, indicating that active dulaglutide was present in the treated animals throughout the study.

Anatomical pathology [3]
Mean terminal body weights were decreased in treated animals (83%–88% of control means) at all necropsies. Decreased mean absolute thyroid/parathyroid weight (81% of control mean) and thyroid/parathyroid to brain weight ratio (84% of control mean) in treated animals were considered secondary to the decreased body weights. The only microscopic finding considered to be dulaglutide related was an increased incidence and severity of focal or multifocal C-cell hypertrophy/hyperplasia in the thyroids of treated rats after 52 weeks of dosing (Table 5). Focal or multifocal C-cell hypertrophy/hyperplasia in one or two treated animals after 26 or 39 weeks of dosing was not considered dulaglutide related; this lesion is a spontaneous background change in rats, as evidenced by the occurrence in one control animal after 39 weeks of dosing. Focal and multifocal C-cell hypertrophy/hyperplasias were characterized by variably sized nodules of well-differentiated C cells that often had increased cytoplasmic volume (hypertrophy). C cells in these foci were usually less intensely calcitonin immunopositive than surrounding C cells. C-cell neoplasms were identified only in the animals examined after 52 weeks of dosing, occurred at a similarly low incidence in control and treated animals, and were considered unrelated to dulaglutide.
References

[1]. Glucagon-like peptide-1 receptor agonist dulaglutide prevents ox-LDL-induced adhesion of monocytes to human endothelial cells: An implication in the treatment of atherosclerosis. Mol Immunol. 2019 Dec;116:73-79.

[2]. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. Lancet . 2019 Jul 13;394(10193):121-130.

[3]. Chronic Toxicity and Carcinogenicity Studies of the Long-Acting GLP-1 Receptor AgonistDulaglutide in Rodents. Endocrinology. 2015 Jul;156(7):2417-28.

Additional Infomation
Atherosclerosis is a common comorbidity of type II diabetes and a leading cause of death worldwide. The presence of oxidized low-density lipoprotein (ox-LDL) drives atherogenesis by inducing oxidative stress, mitochondrial dysfunction, expression of proinflammatory cytokines and chemokines including interleukin (IL)-1β, IL-6, and monocyte chemoattractant protein 1 (MCP-1), adhesion molecules including vascular cellular adhesion molecule 1 (VCAM-1) and E-selectin, and downregulating expression of the Krüppel-like factor 2 (KLF2) transcription factor. Importantly, ox-LDL induced the attachment of THP-1 monocytes to endothelial cells. In the present study, we demonstrate for the first time that the specific glucagon-like peptide 1 receptor (GLP-1R) agonist dulaglutide may prevent these atherosclerotic effects of ox-LDL by preventing suppression of KLF2 by p53 protein in human aortic endothelial cells. KLF2 has been shown to play a major role in protecting vascular endothelial cells from damage induced by ox-LDL and oscillatory shear, and therefore, therapies capable of mediating KLF2 signaling may be an attractive treatment option for preventing the development and progression of atherosclerosis. [1]
Background: Three different glucagon-like peptide-1 (GLP-1) receptor agonists reduce cardiovascular outcomes in people with type 2 diabetes at high cardiovascular risk with high glycated haemoglobin A1c (HbA1c) concentrations. We assessed the effect of the GLP-1 receptor agonist dulaglutide on major adverse cardiovascular events when added to the existing antihyperglycaemic regimens of individuals with type 2 diabetes with and without previous cardiovascular disease and a wide range of glycaemic control. Methods: This multicentre, randomised, double-blind, placebo-controlled trial was done at 371 sites in 24 countries. Men and women aged at least 50 years with type 2 diabetes who had either a previous cardiovascular event or cardiovascular risk factors were randomly assigned (1:1) to either weekly subcutaneous injection of dulaglutide (1·5 mg) or placebo. Randomisation was done by a computer-generated random code with stratification by site. All investigators and participants were masked to treatment assignment. Participants were followed up at least every 6 months for incident cardiovascular and other serious clinical outcomes. The primary outcome was the first occurrence of the composite endpoint of non-fatal myocardial infarction, non-fatal stroke, or death from cardiovascular causes (including unknown causes), which was assessed in the intention-to-treat population. This study is registered with ClinicalTrials.gov, number NCT01394952. Findings: Between Aug 18, 2011, and Aug 14, 2013, 9901 participants (mean age 66·2 years [SD 6·5], median HbA1c 7·2% [IQR 6·6-8·1], 4589 [46·3%] women) were enrolled and randomly assigned to receive dulaglutide (n=4949) or placebo (n=4952). During a median follow-up of 5·4 years (IQR 5·1-5·9), the primary composite outcome occurred in 594 (12·0%) participants at an incidence rate of 2·4 per 100 person-years in the dulaglutide group and in 663 (13·4%) participants at an incidence rate of 2·7 per 100 person-years in the placebo group (hazard ratio [HR] 0·88, 95% CI 0·79-0·99; p=0·026). All-cause mortality did not differ between groups (536 [10·8%] in the dulaglutide group vs 592 [12·0%] in the placebo group; HR 0·90, 95% CI 0·80-1·01; p=0·067). 2347 (47·4%) participants assigned to dulaglutide reported a gastrointestinal adverse event during follow-up compared with 1687 (34·1%) participants assigned to placebo (p<0·0001). Interpretation: Dulaglutide could be considered for the management of glycaemic control in middle-aged and older people with type 2 diabetes with either previous cardiovascular disease or cardiovascular risk factors. [2]
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Exact Mass
3313.597
CAS #
923950-08-7
Related CAS #
GLP-1 moiety from Dulaglutide; 1197810-60-8
PubChem CID
171042928
Sequence
HGEGTFTSDVSSYLEEQAAKEFIAWLVKGGG
Appearance
Typically exists as solid at room temperature
Density
1.4±0.1 g/cm3
Index of Refraction
1.706
LogP
3.81
Hydrogen Bond Donor Count
48
Hydrogen Bond Acceptor Count
53
Rotatable Bond Count
109
Heavy Atom Count
235
Complexity
7740
Defined Atom Stereocenter Count
29
SMILES
CC[C@H](C)[C@@H](C(=O)N[C@@H](C)C(=O)N[C@@H](CC1=CNC2=CC=CC=C21)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCCN)C(=O)NCC(=O)NCC(=O)NCC(=O)O)NC(=O)[C@H](CC3=CC=CC=C3)NC(=O)[C@H](CCC(=O)O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CCC(=O)N)NC(=O)[C@H](CCC(=O)O)NC(=O)[C@H](CCC(=O)O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC4=CC=C(C=C4)O)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H](C(C)C)NC(=O)[C@H](CC(=O)O)NC(=O)[C@H](CO)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC5=CC=CC=C5)NC(=O)[C@H]([C@@H](C)O)NC(=O)CNC(=O)[C@H](CCC(=O)O)NC(=O)CNC(=O)[C@H](CC6=CNC=N6)N
InChi Key
HPNPLWNTQBSMAJ-FBXRENMFSA-N
InChi Code
InChI=1S/C149H221N37O49/c1-16-76(10)121(147(233)164-79(13)126(212)172-103(58-85-61-155-90-34-24-23-33-88(85)90)137(223)174-99(54-73(4)5)138(224)183-119(74(6)7)145(231)171-91(35-25-27-51-150)128(214)159-64-110(195)156-63-109(194)157-67-118(208)209)185-139(225)101(55-82-29-19-17-20-30-82)175-134(220)97(45-50-116(204)205)168-131(217)92(36-26-28-52-151)166-125(211)78(12)162-124(210)77(11)163-130(216)94(41-46-108(153)193)167-132(218)95(43-48-114(200)201)169-133(219)96(44-49-115(202)203)170-135(221)98(53-72(2)3)173-136(222)100(57-84-37-39-87(192)40-38-84)176-142(228)105(68-187)179-144(230)107(70-189)180-146(232)120(75(8)9)184-141(227)104(60-117(206)207)177-143(229)106(69-188)181-149(235)123(81(15)191)186-140(226)102(56-83-31-21-18-22-32-83)178-148(234)122(80(14)190)182-112(197)66-160-129(215)93(42-47-113(198)199)165-111(196)65-158-127(213)89(152)59-86-62-154-71-161-86/h17-24,29-34,37-40,61-62,71-81,89,91-107,119-123,155,187-192H,16,25-28,35-36,41-60,63-70,150-152H2,1-15H3,(H2,153,193)(H,154,161)(H,156,195)(H,157,194)(H,158,213)(H,159,214)(H,160,215)(H,162,210)(H,163,216)(H,164,233)(H,165,196)(H,166,211)(H,167,218)(H,168,217)(H,169,219)(H,170,221)(H,171,231)(H,172,212)(H,173,222)(H,174,223)(H,175,220)(H,176,228)(H,177,229)(H,178,234)(H,179,230)(H,180,232)(H,181,235)(H,182,197)(H,183,224)(H,184,227)(H,185,225)(H,186,226)(H,198,199)(H,200,201)(H,202,203)(H,204,205)(H,206,207)(H,208,209)/t76-,77-,78-,79-,80+,81+,89-,91-,92-,93-,94-,95-,96-,97-,98-,99-,100-,101-,102-,103-,104-,105-,106-,107-,119-,120-,121-,122-,123-/m0/s1
Chemical Name
(4S)-5-[[2-[[(2S,3R)-1-[[(2S)-1-[[(2S,3R)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-5-amino-1-[[(2S)-1-[[(2S)-1-[[(2S)-6-amino-1-[[(2S)-1-[[(2S)-1-[[(2S,3S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-1-[[(2S)-6-amino-1-[[2-[[2-(carboxymethylamino)-2-oxoethyl]amino]-2-oxoethyl]amino]-1-oxohexan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-3-(1H-indol-3-yl)-1-oxopropan-2-yl]amino]-1-oxopropan-2-yl]amino]-3-methyl-1-oxopentan-2-yl]amino]-1-oxo-3-phenylpropan-2-yl]amino]-4-carboxy-1-oxobutan-2-yl]amino]-1-oxohexan-2-yl]amino]-1-oxopropan-2-yl]amino]-1-oxopropan-2-yl]amino]-1,5-dioxopentan-2-yl]amino]-4-carboxy-1-oxobutan-2-yl]amino]-4-carboxy-1-oxobutan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-3-(4-hydroxyphenyl)-1-oxopropan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]amino]-3-carboxy-1-oxopropan-2-yl]amino]-3-hydroxy-1-oxopropan-2-yl]amino]-3-hydroxy-1-oxobutan-2-yl]amino]-1-oxo-3-phenylpropan-2-yl]amino]-3-hydroxy-1-oxobutan-2-yl]amino]-2-oxoethyl]amino]-4-[[2-[[(2S)-2-amino-3-(1H-imidazol-4-yl)propanoyl]amino]acetyl]amino]-5-oxopentanoic acid
Synonyms
Dulaglutide; GLP-1 moiety from Dulaglutide; 923950-08-7; Dulaglutide; 1197810-60-8; HPNPLWNTQBSMAJ-FBXRENMFSA-N; LY2189265
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)

Note: Please refer to the "Guidelines for Dissolving Peptides" section in the 4th page of the "Instructions for use" file (upper-right section of this webpage) for how to dissolve peptides.
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
Safety, Tolerability, Pharmacokinetics and Pharmacodynamics of Multiple Subcutaneous Injections of HRS9531 in Patients With Type 2 Diabetes Mellitus
CTID: NCT05516966
Phase: Phase 1    Status: Completed
Date: 2024-11-15
Therapeutic Strategies for Microvascular Dysfunction in Type 1 Diabetes
CTID: NCT05478707
Phase: Phase 2    Status: Recruiting
Date: 2024-11-12
Effects of GLP1-RA on Ectopic Fat Deposition in Chronic Kidney Disease
CTID: NCT05254418
Phase: Phase 2    Status: Completed
Date: 2024-11-05
A Study of Tirzepatide (LY3298176) Compared With Dulaglutide on Major Cardiovascular Events in Participants With Type 2 Diabetes
CTID: NCT04255433
Phase: Phase 3    Status: Active, not recruiting
Date: 2024-10-16
The Effect of Combined Dulaglutide and Dapagliflozin Treatment vs DPP-4 Inhibitors in Endothelial and Vascular Function in Patients With Type 2 Diabetes Mellitus and Albuminuria
CTID: NCT06611904
Phase: N/A    Status: Active, not recruiting
Date: 2024-09-25
View More

Perioperative Stress Hyperglycemia in General and Vascular Surgery Patients
CTID: NCT04862234
Phase: Phase 4    Status: Recruiting
Date: 2024-09-20


A Study of IBI362 in Participants With Type 2 Diabetes
CTID: NCT05606913
Phase: Phase 3    Status: Completed
Date: 2024-08-23
A Phase 3 Study to Evaluate the Efficacy of JY09 Compared With Dulaglutide in Combination Therapy Diabetes Mellitus Type 2 Patients With Metformin
CTID: NCT06257966
Phase: Phase 3    Status: Recruiting
Date: 2024-08-22
A Study of Tirzepatide (LY3298176) in Adult Participants With Type 2 Diabetes Switching From Dulaglutide (SURPASS-SWITCH)
CTID: NCT05564039
Phase: Phase 4    Status: Completed
Date: 2024-08-16
Holding vs. Continuing Incretin-based Therapies Before Upper Endoscopy
CTID: NCT06533527
Phase: N/A    Status: Recruiting
Date: 2024-08-14
Metabolic Phenotyping During Stress Hyperglycemia in Cardiac Surgery Patients
CTID: NCT03743025
Phase: Phase 4    Status: Terminated
Date: 2024-05-30
A Study of Two Doses of Dulaglutide (LY2189265) in Japanese Patients With Type 2 Diabetes
CTID: NCT04809220
Phase: Phase 3    Status: Completed
Date: 2024-05-22
A Study of LY3532226 in Participants With Type 2 Diabetes Mellitus
CTID: NCT05407961
Phase: Phase 1    Status: Completed
Date: 2024-03-29
The Effect of Dulaglutide as an Adjuvant Therapy on Cognitive Function in Bipolar Disorder Patients With Obesity
CTID: NCT06331286
Phase: N/A    Status: Recruiting
Date: 2024-03-26
A Study of Dulaglutide (LY2189265) in Participants With Type 2 Diabetes Mellitus in India
CTID: NC
A Randomized, Double-Blind, Parallel Arm Study of the Efficacy and Safety of Investigational Dulaglutide Doses
CTID: null
Phase: Phase 3    Status: Completed
Date: 2018-04-23
A Phase 2 Study of Once-Weekly LY3298176 Compared with Placebo and Dulaglutide in Patients with Type 2 Diabetes Mellitus
CTID: null
Phase: Phase 2    Status: Completed
Date: 2017-06-15
A Randomized, Double-Blind Study with an Open-Label Extension Comparing the Effect of Once-Weekly Dulaglutide with Placebo in Pediatric Patients with Type 2 Diabetes Mellitus
CTID: null
Phase: Phase 3    Status: GB - no longer in EU/EEA, Completed
Date: 2017-05-24
A Phase 2, Double-Blind, Placebo-Controlled, 18-Week Trial of Investigational Dulaglutide Doses versus Placebo in Patients with Type 2 Diabetes on Metformin Monotherapy
CTID: null
Phase: Phase 2    Status: Completed
Date: 2016-12-06
A 26-Week Randomized, Open-label, Active Controlled, Parallel-group, Study Assessing the Efficacy and Safety of the Insulin Glargine/Lixisenatide Fixed Ratio Combination in Adults with Type 2 Diabetes Inadequately Controlled on GLP-1 Receptor Agonist and Metformin (alone or with Pioglitazone and/or SGLT2 inhibitors), Followed by a Fixed Ratio Combination Single-arm 26-Week Extension Period
CTID: null
Phase: Phase 3    Status: Completed
Date: 2016-06-17
A Randomized, Double-Blind Trial Comparing the Effect of Dulaglutide 1.5 mg with Placebo on Glycemic Control in Patients with Type 2 Diabetes on Basal Insulin Glargine
CTID: null
Phase: Phase 3    Status: Completed
Date: 2014-04-18
Protocol H9X-MC-GBDG
CTID: null
Phase: Phase 3    Status: Completed
Date: 2013-04-19
A Randomized, Open-Label, Parallel-Arm Study Comparing the Effect of Once-Weekly Dulaglutide with Insulin Glargine on Glycemic Control in Patients with Type 2 Diabetes and Moderate or Severe Chronic Kidney Disease
CTID: null
Phase: Phase 3    Status: Completed
Date: 2012-09-05
A Randomized, Open-Label, Parallel-Arm Study Comparing the Effect of Once-Weekly Dulaglutide with Once-Daily Liraglutide in Patients with Type 2 Diabetes (AWARD-6: Assessment of Weekly AdministRation of LY2189265 in Diabetes-6)
CTID: null
Phase: Phase 3    Status: Completed
Date: 2012-07-11
The Effect of Dulaglutide on Major Cardiovascular Events in Patients with Type 2 Diabetes: Researching Cardiovascular Events with a Weekly INcretin in Diabetes (REWIND)
CTID: null
Phase: Phase 3    Status: Completed
Date: 2011-10-06
Efficacy and safety of semaglutide versus dulaglutide as add-on to metformin in subjects with type 2 diabetes
CTID: null
Phase: Phase 3    Status: Completed
Date:
The efficacy of Dulaglutide in patients with diabetes undergoing hemodialysis.
CTID: UMIN000039525
PhaseNot applicable    Status: Complete: follow-up complete
Date: 2020-02-18
None
CTID: jRCT2080224591
Phase:    Status: completed
Date: 2019-03-13
Effect of dulaglutide versus liraglutide on glucose variability and oxidative stress and endothelial function in type 2 diabetes patients
CTID: UMIN000034353
Phase:    Status: Complete: follow-up complete
Date: 2018-10-10
Comparison glycemic excursions of short-acting glucagon-like peptide 1(GLP-1) Receptor Agonists(RAs)(Liraglutide) with long-acting GLP-1 RAs(Dulaglutide).
CTID: UMIN000032125
Phase:    Status: Recruiting
Date: 2018-04-06
Observation of using GLP-1 receptor agonist for wellness of brain activity in type 2 diabetes patients with mild cognitive impairment
CTID: UMIN000030840
Phase:    Status: Recruiting
Date: 2018-01-16
None
CTID: jRCT1080223698
Phase:    Status: completed
Date: 2017-10-31
Efficacy and safety of dulaglutide in the treatment of type 2 diabetes
CTID: UMIN000027255
Phase:    Status: Recruiting
Date: 2017-05-06
Safety and Efficacy of dulaglutide therapy for perioperative glycaemic control
CTID: UMIN000024342
Phase:    Status: Complete: follow-up complete
Date: 2017-04-05
Elucidation of Mechanisms Underlying Glucose-lowering Effect of Dulaglutide Using C13-acetate Breath Test and Its Anti-arteriosclerotic Effect Using Endothelial Function Test in Japanese Working T2DM Patients
CTID: UMIN000026679
Phase:    Status: Pending
Date: 2017-04-01
Prospective Comparison of SGLT-2 inhibitor, Luseogliflozin,versus GLP-1 Receptor Agonist,Dulaglutide, on Regression of Coronary Atherosclerosis with Type 2 Diabetes Mellitus who have Undergone Percutaneous Coronary Intervention: Open-label Randomized Parallel-group Trial
CTID: UMIN000026630
Phase:    Status: Recruiting
Date: 2017-04-01
None
CTID: jRCT2080223430
Phase:    Status: completed
Date: 2017-01-10
Safety and efficacy of dulaglutide therapy for the inpatient management of general medicine patients with type 2 diabetes
CTID: UMIN000025006
Phase:    Status: Complete: follow-up complete
Date: 2016-12-01
Effects of dulaglutide and trelagliptin on beta-cell function in patients with type 2 diabetes: a randomized controlled study
CTID: UMIN000024164
Phase:    Status: Complete: follow-up complete
Date: 2016-11-29
Examination of additive effects of dulaglutide and empagliflozin to type 2 diabetic patients with poor glycemic control despite insulin administration.
CTID: UMIN000024703
Phase:    Status:
Date: 2016-11-04
An exploratory clinical trial about the efficacy and safety of GLP-1 receptor agonist dulaglutide in maintenance hemodialysis patients with type 2 diabetes treated with insulin
CTID: UMIN000024283
PhaseNot applicable    Status: Complete: follow-up complete
Date: 2016-10-11
None
CTID: jRCT1080223318
Phase:    Status:
Date: 2016-09-13
Efficacy and safety of dulaglutide when used instead of sitagliptin in type 2 diabetic patients
CTID: UMIN000023245
PhaseNot applicable    Status: Complete: follow-up complete
Date: 2016-07-25
Differences about effectiveness of CGM and treatment satisfaction between dulaglutide and omarigliptin.
CTID: UMIN000021953
PhaseNot applicable    Status: Recruiting
Date: 2016-04-18
Comparison of the efficacy and safety of dulaglutide in combination with insulin compared with insulin alone in daibetes patients who are receiving high dose glucocorticoids therapy: a randomized,open-label trial
CTID: UMIN000020037
PhaseNot applicable    Status:
Date: 2015-12-02
Comparison of efficacy and safety of exenatide extended-release and dulaglutide in type 2 diabetes mellitus patients who are insufficiently controlled with oral antidiabetic agents
CTID: UMIN000019096
PhaseNot applicable    Status: Recruiting
Date: 2015-09-24
Comparison of efficacy of liraglutide and dulaglutide in type 2 diabetes mellitus patients
CTID: UMIN000019070
PhaseNot applicable    Status: Recruiting
Date: 2015-09-18
Efficacy and safety of dulaglutide when used instead of exenatide extended-release in type 2 diabetic patients
CTID: UMIN000019031
PhaseNot applicable    Status: Complete: follow-up complete
Date: 2015-09-16
None
CTID: jRCT2080221754
Phase:    Status: recruiting
Date: 2012-04-02

Contact Us