yingweiwo

(E)-Ferulic acid

Cat No.:V30234 Purity: ≥98%
(E)-Ferulic acid is an orally bioactive antioxidant that causes apoptosis.
(E)-Ferulic acid
(E)-Ferulic acid Chemical Structure CAS No.: 537-98-4
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
100mg
Other Sizes

Other Forms of (E)-Ferulic acid:

  • trans-Isoferulic acid-d3
  • (E)-5-Hydroxyferulic acid
  • Geranyl ferulate-geranylferulic acid)
  • Ferulic acid-13C3
  • Erythro-guaiacylglycerol-β-ferulic acid ether
  • Ferulic Acid
  • Ferulic acid sodium
  • (E)-Ferulic acid-d3 ((E)-Coniferic acid-d3)
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
(E)-Ferulic acid is an orally bioactive antioxidant that causes apoptosis. (E)-Ferulic acid has antiproliferation and antimigratory effects. (E)-Ferulic acid can reduce the liver and kidney toxicity and oxidative stress of tamoxifen in rats.
Biological Activity I Assay Protocols (From Reference)
ln Vitro
In the human lung cancer cell line H1299, (E)-ferulic acid (0.03-0.6 mM, 24 h, 48 h) has modest anti-proliferative and anti-migration effects [1].
ln Vivo
(E)-ferulic acid can lessen the effects of tamoxifen on oxidation and nephrotoxicity when given intraperitoneally at a dose of 100 mg/kg for 21 days [2].
Cell Assay
Cell proliferation analysis [1]
Cell Types: H1299
Tested Concentrations: 0.03- 0.6 mM
Incubation Duration: 24 h, 48 h
Experimental Results: There was no obvious cytotoxic effect at low doses, but cytotoxicity was observed at 0.3 and 0.6 mM 48 h.

Apoptosis analysis [1]
Cell Types: H1299
Tested Concentrations: 0.03-0.6 mM
Incubation Duration: 48 h
Experimental Results: The cell cycle was arrested at G0/G1 and the percentage of G2/M phase diminished. and induced a significant increase in the apoptotic population.

Cell migration assay using 0.6 mM [1]
Cell Types: H1299
Tested Concentrations: 0.03-0.6 mM
Incubation Duration: 16 hrs (hours) (48 hrs (hours))
Experimental Results: Inhibition of cell migration and invasion. By reducing the activities of MMP-2 and MMP-9 and increasing β-catenin phosphorylation at Thr41/Ser45, it does not affect β-catenin protein levels.
Animal Protocol
Animal/Disease Models: Male Wister albino rat model [2]
Doses: 100 mg/kg
Route of Administration: ig, one time/day for 21 days
Experimental Results: Reduce the increase in AST, ALT and ALP enzyme activities caused by tamoxifen, and improve it Reduction in liver enzyme activity.
ADME/Pharmacokinetics
Absorption, Distribution and Excretion
The study described here has investigated the bioavailability of ferulic acid in humans, from tomato consumption, through the monitoring of the pharmacokinetics of excretion in relation to intake. The results show that the peak time for maximal urinary excretion is approximately 7 hr and the recovery of ferulic acid in the urine, on the basis of total free ferulic acid and feruloyl glucuronide excreted, is 11-25% of that ingested.
The ... study investigated the urinary excretion of free and conjugated ferulic acid, present in quantitatively detectable amounts in French maritime pine (Pinus maritima) bark extract (PBE), after oral PBE administration to human subjects. Eleven healthy adult subjects (4 women and 7men) consumed either a single dose (200 mg PBE) or two doses of PBE (100 and 200 mg, respectively) within a 48-hr interval. Two days before the oral administration of PBE and during the urine sample collection period volunteers adhered to a diet low in polyphenols. Aliquots of all urine production were collected over 24 hr. Free and conjugated ferulic acid was assessed in urine by HPLC using diode array detection. A close association between the dietary intake of PBE and the urinary excretion of ferulic acid was detected. Moreover, the results indicate that a considerable proportion of ferulic acid is excreted as glucuronide or sulfate after PBE consumption, varying over the range 2 to 20% between individuals. The kinetics of excretion associated with the administration of 100 mg PBE was quite similar to that obtained after 200 mg PBE. A biphasic trend was evident in a number of subjects. All subjects studied here displayed a significant, although variable level of excretion of ferulic acid after supplementation with PBE, Thus, the data provide evidence that at least a part of the phenolic components of PBE are absorbed, metabolized, and eliminated by humans.
The hydroxycinnamates, intermediates in the phenylpropanoid synthetic pathway, are effective in enhancing the resistance of low-density lipoprotein (LDL) to oxidation in the order caffeic acid greater than ferulic acid greater than p-coumaric acid. It is unclear whether the mode of action of ferulic acid as an antioxidant is based on its activities in the aqueous or the lipophilic phase. Partitioning of 14C-labelled ferulic acid into plasma and its components, LDL and the albumin-rich fractions, has been studied under conditions of maximum aqueous solubility. The majority of ferulic acid associates with the albumin-rich fraction of the plasma, although a proportion is also found to partition between the LDL and aqueous phases; however, ferulic acid does not associate with the lipid portion of the LDL particle, suggesting that it exerts its antioxidant properties from the aqueous phase. This is of particular interest since the results demonstrate that ferulic acid is a more effective antioxidant against LDL oxidation than the hydrophilic antioxidant ascorbic acid.
The major constituents of artichoke extracts are hydroxycinnamic acids such as chlorogenic acid, dicaffeoylquinic acids caffeic acid and ferulic acid, and flavonoids such as luteolin and apigenin glycosides. ...Several studies have shown the effect on animal models of artichoke extracts ... . . Results showed a plasma maximum concentration of 6.4 (SD 1.8) ng/mL for chlorogenic acid after 1 hr and its disappearance within 2 hr (P< 0.05). Peak plasma concentrations of 19.5 (SD 6.9) ng/ml for total caffeic acid were reached within 1 h, while ferulic acid plasma concentrations showed a biphasic profile with 6.4 (SD1.5) ng/mL and 8.4 (SD4.6) ng/mL within 1 hr and after 8 hr respectively. ...A significant increase of dihydrocaffeic acid and dihydroferulic acid total levels after 8 hr (P<0.05) /was observed/. No circulating plasma levels of luteolin and apigenin were present.
Metabolism / Metabolites
The bioavailability of ferulic acid (FA; 3-methoxy-4-hydroxycinnamic acid) and its metabolites was investigated in rat plasma and urine after an oral short-term ingestion of 5.15 mg/kg of FA. Free FA, glucuronoconjugates, and sulfoconjugates were quickly detected in plasma with a peak of concentration found 30 min after ingestion. Sulfoconjugates were the main derivates ( approximately 50%). In urine, the cumulative excretion of total metabolites reached a plateau 1.5 h after ingestion, and approximately 40% were excreted by this way. Free FA recovered in urine represented only 4.9 +/-1.5% of the native FA consumed by rats. Glucuronoconjugates and sulfoconjugates represented 0.5 +/- 0.3 and 32.7 +/- 7.3%, respectively. These results suggested that a part of FA incorporated in the diet was quickly absorbed and largely metabolized in sulfoconjugates before excretion in urine.
Ferulic acid (FA) is a phytochemical commonly found in fruits and vegetables such as tomatoes, sweet corn and rice bran. It arises from metabolism of phenylalanine and tyrosine by Shikimate pathway in plants.
Ferulic Acid has known human metabolites that include (2S,3S,4S,5R)-6-[4-[(E)-2-carboxyethenyl]-2-methoxyphenoxy]-3,4,5-trihydroxyoxane-2-carboxylic acid.
Toxicity/Toxicokinetics
Interactions
The effects of topically applied curcumin, chlorogenic acid, caffeic acid, and ferulic acid on 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced epidermal ornithine decarboxylase activity, epidermal DNA synthesis, and the promotion of skin tumors were evaluated in female CD-1 mice. Topical application of 0.5, 1, 3, or 10 umol of curcumin inhibited by 31, 46, 84, or 98%, respectively, the induction of epidermal ornithine decarboxylase activity by 5 nmol of TPA. In an additional study, the topical application of 10 umol of curcumin, chlorogenic acid, caffeic acid, or ferulic acid inhibited by 91, 25, 42, or 46%, respectively, the induction of ornithine decarboxylase activity by 5 nmol of TPA. The topical application of 10 umol of curcumin together with 2 or 5 nmol of TPA inhibited the TPA-dependent stimulation of the incorporation of [3H]-thymidine into epidermal DNA by 49 or 29%, respectively, whereas lower doses of curcumin had little or no effect. Chlorogenic acid, caffeic acid, and ferulic acid were less effective than curcumin as inhibitors of the TPA-dependent stimulation of DNA synthesis. Topical application of 1, 3, or 10 mumol of curcumin together with 5 nmol of TPA twice weekly for 20 weeks to mice previously initiated with 7,12-dimethylbenz[a]anthracene inhibited the number of TPA-induced tumors per mouse by 39, 77, or 98%, respectively. Similar treatment of mice with 10 mumol of chlorogenic acid, caffeic acid, or ferulic acid together with 5 nmol of TPA inhibited the number of TPA-induced tumors per mouse by 60, 28, or 35%, respectively, and higher doses of the phenolic acids caused a more pronounced inhibition of tumor promotion. The possibility that curcumin could inhibit the action of arachidonic acid was evaluated by studying the effect of curcumin on arachidonic acid-induced edema of mouse ears. The topical application of 3 or 10 umol of curcumin 30 min before the application of 1 umol of arachidonic acid inhibited arachidonic acid-induced edema by 33 or 80%, respectively.
... A series of in vivo experiments/were/ carried out to evaluate the ability of caffeic and ferulic acids to reduce, in healthy human volunteers, UVB-induced skin erythema, monitored by means of reflectance spectrophotometry. Caffeic and ferulic acids, dissolved in saturated aqueous solution pH 7.2, proved to afford a significant protection to the skin against UVB-induced erythema...
A variety of synthetic and dietary polyphenols protect mammalian and bacterial cells from cytotoxicity induced by hydroperoxides, especially hydrogen peroxide (H2O2). Cytotoxicity of H2O2 on Chinese hamster V79 cells was assessed with a colony formation assay. Cytotoxicity and mutagenicity of H2O2 on Salmonella TA104 were assessed with the Ames test. SOS response induced by H2O2 was investigated in the SOS chromotest with Escherichia coli PQ37. The polyphenol-bearing o-dihydroxy (catechol) structure, i.e., nordihydroguaiaretic acid, caffeic acid ester, gallic acid ester, quercetin, and catechin, were effective for suppression of H2O2-induced cytotoxicity in these assay systems. In contrast, neither ferulic acid ester-bearing o-methoxyphenol structure nor alpha-tocopherol were effective, indicating that o-dihydroxy or its equivalent structure in flavonoids is essential for the protection. There are many reports describing that polyphenols act as prooxidants in the presence of metal ions. /These/ results suggest, however, that they act as antioxidants in the cells, when no metal ions are added to the medium.
This review describes the modes of mice radiation injuries induced by soft X-irradiation under various conditions and the protective effects of several kinds of substances on these injuries. The models of radiation injuries in this study were bone marrow death after lethal irradiation, skin damage induced by irradiation with long length soft X-ray and leukocytopenia in the peripheral blood after sublethal irradiation. Two bioassay methods were established for the survival effect on the lethal irradiation and protective potency on the skin damage induced by soft X-irradiation. The protective potencies of various sulfur compounds, related compounds of ferulic acid, nucleic acid constitutional compounds, crude drugs and Chinese traditional medicines were determined and then many effective drugs were recognized. Effective components in the methanol extracts of Cnidii Rhizoma and Aloe arborescens recognized as radioprotectable were fractionated. As a result of these studies, it was observed that the active principles in Cnidii Rhizoma were identified as ferulic acid and adenosine. The scavenger action of active oxygens, a protective effect on the damages of deoxyribonucleic acid and superoxide dismutase by in vitro soft X-irradiation were evaluated as radiation protective mechanisms.
For more Interactions (Complete) data for FERULIC ACID (8 total), please visit the HSDB record page.
References

[1]. Inhibitory effect of trans-ferulic acid on proliferation and migration of human lung cancer cells accompanied with increased endogenous reactive oxygen species and β-catenin instability. Chin Med. 2016 Oct 1;11:45.

[2]. Protective Effects of Trans-Ferulic acid on Tamoxifen Induced Heptatic and Renal Oxidative Stress in Male Wister Albino Rat. Journal of Applied Sciences and Environmental Management, 2023, 27(8): 1727-1732.

Additional Infomation
Ferulic acid is a ferulic acid consisting of trans-cinnamic acid bearing methoxy and hydroxy substituents at positions 3 and 4 respectively on the phenyl ring. It has a role as an antioxidant, a MALDI matrix material, a plant metabolite, an anti-inflammatory agent, an apoptosis inhibitor and a cardioprotective agent. It is a conjugate acid of a ferulate.
Ferulic acid has been reported in Salvia rosmarinus, Camellia reticulata, and other organisms with data available.
Ferulic acid is a metabolite found in or produced by Saccharomyces cerevisiae.
See also: Angelica sinensis root (part of).
Therapeutic Uses
Ferulic acid (FA) is an effective scavenger of free radicals and it has been approved in certain countries as food additive to prevent lipid peroxidation.
Sodium ferulate (SF) or 3-methoxy-4-hydroxy-cinamate sodium is an active principle from Angelica sinensis, Cimicifuga heracleifolia, Lignsticum chuangxiong, and other plants. It has been used in traditional Chinese medicine and is approved by State Drugs Administration of China as a drug for treatment of cardiovascular and cerebrovascular diseases. SF has antithrombotic, platelet aggregation inhibitory and antioxidant activities in animals and humans. For several decades SF has been widely used in China to treat cardiovascular and cerebrovascular diseases and to prevent thrombosis... /Sodium ferulate/
/EXPL THER/ Ligusticum Chuanxiong and its effective components were studied in the treatment of ischemic stroke, a common emergent disease in China. Some injections of the medicines, including Ligusticum, Ligustrazine, Ligustylid and ferulic acid, were tested clinically and experimentally. The results showed that the effects of the drugs were the same as or even better than those of the controls, such as papaverine, dextran and aspirin-persantin. They could improve brain microcirculation through inhibiting thrombus formation and platelet aggregation as well as blood viscosity.
/EXPL THER/ Although more definitive research is necessary, several natural therapies show promise in treating hot flashes without the risks associated with conventional therapies. Soy and other phytoestrogens, black cohosh, evening primrose oil, vitamin E, the bioflavonoid hesperidin with vitamin C, ferulic acid, acupuncture treatment, and regular aerobic exercise have been shown effective in treating hot flashes in menopausal women.
For more Therapeutic Uses (Complete) data for FERULIC ACID (6 total), please visit the HSDB record page.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C10H10O4
Molecular Weight
194.1840
Exact Mass
194.057
CAS #
537-98-4
Related CAS #
Ferulic acid;1135-24-6;Ferulic acid sodium;24276-84-4;(E)-Ferulic acid-d3;860605-59-0
PubChem CID
445858
Appearance
White to off-white solid powder
Density
1.3±0.1 g/cm3
Boiling Point
372.3±27.0 °C at 760 mmHg
Melting Point
168-172ºC
Flash Point
150.5±17.2 °C
Vapour Pressure
0.0±0.9 mmHg at 25°C
Index of Refraction
1.627
LogP
1.64
Hydrogen Bond Donor Count
2
Hydrogen Bond Acceptor Count
4
Rotatable Bond Count
3
Heavy Atom Count
14
Complexity
224
Defined Atom Stereocenter Count
0
SMILES
COC1=C(C=CC(=C1)/C=C/C(=O)O)O
InChi Key
KSEBMYQBYZTDHS-HWKANZROSA-N
InChi Code
InChI=1S/C10H10O4/c1-14-9-6-7(2-4-8(9)11)3-5-10(12)13/h2-6,11H,1H3,(H,12,13)/b5-3+
Chemical Name
(E)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoic acid
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~100 mg/mL (~514.99 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (12.87 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (12.87 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.5 mg/mL (12.87 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 5.1499 mL 25.7493 mL 51.4986 mL
5 mM 1.0300 mL 5.1499 mL 10.2997 mL
10 mM 0.5150 mL 2.5749 mL 5.1499 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us