yingweiwo

EL102

Alias: EL102; EL-102; EL 102.
Cat No.:V3443 Purity: ≥98%
EL102,a novel toluidine sulphonamide, is a novel inhibitor of HIF1α (hypoxia inducible factor) and can also potently inhibit tubulin polymerisation and decreased microtubule stability.
EL102
EL102 Chemical Structure CAS No.: 1233948-61-2
Product category: HIF HIF Prolyl-Hydroxylase
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
10mg
25mg
50mg
100mg
250mg
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

EL102, a novel toluidine sulphonamide, is a novel inhibitor of HIF1α (hypoxia inducible factor) and can also potently inhibit tubulin polymerisation and decreased microtubule stability. EL102 has in vitro activity against prostate cancer, characterised by accumulation in G2/M, induction of apoptosis, inhibition of Hif1α, and inhibition of tubulin polymerisation and decreased microtubule stability. In vivo, a combination of EL102 and docetaxel exhibits superior tumour inhibition. The DLKP cell line and multidrug-resistant DLKPA variant (which exhibits 205 to 691-fold greater resistance to docetaxel, paclitaxel, vincristine and doxorubicin) are equally sensitive to EL102. In conclusion, EL102 shows potential as both a single agent and within combination regimens for the treatment of prostate cancer, particularly in the chemoresistance setting.

Biological Activity I Assay Protocols (From Reference)
ln Vitro
In vitro growth of prostate cancer cells is inhibited by EL-102 (0-120 nM; 72 hours) [1]. Prostate cancer cell lines are cytotoxic to EL-102 (0-100 nM; 72 hours) [1]. EL-102 (10-100 nM; 24-72 hours) alters the cell cycle and causes apoptosis [1]. In DU145 cells, EL-102 (10–100 nM; 24-48 hours) influences PARP cleavage [1]. Inhibiting tubulin polymerization activity, EL-102 (5 nM; 0-60 min) [1]. Hif1α protein expression is inhibited by EL-102 (0-100 nM; 1 hour) [1].
ln Vivo
The in vivo effects of docetaxel are enhanced by EL-102 (12 and 15 mg/kg; administered orally for 5 days, with 2 days off, 13 to 37 days following tumor transplantation) [1].
Cell Assay
Cell Proliferation Assay[1]
Cell Types: CWR22, 22Rv1, DU145, PC-3, DLKP and DLKPA Cell Line
Tested Concentrations: 0-120 nM
Incubation Duration: 72 hrs (hours)
Experimental Results: CWR22, 22Rv1, DU145, PC-3, DLKP and DLKPA The IC50 of mycin-selected variant DLKPA cells were 24, 21.7, 40.3, 37.0, 14.4 and 16.3 nM, respectively.

Cytotoxicity assay[1]
Cell Types: CWR22, 22Rv1, DU145 and PC-3 cell lines
Tested Concentrations: 0-100 nM
Incubation Duration: 72 hrs (hours)
Experimental Results: demonstrated cytotoxicity to prostate cancer cell lines and inhibited prostate cancer cell lines No additive effects on cell viability of docetaxel.

Apoptosis analysis[1]
Cell Types: CWR22, 22Rv1, DU145, PC-3, DLKP and DLKPA Cell line
Tested Concentrations: 10 and 100 nM
Incubation Duration: 24, 48 and 72 hrs (hours)
Experimental Results: Induction of apoptosis with a certain dose, Inhibits cell viability 100 nm.

Western Blot Analysis [1]
Cell Types: DU145 Cell line
Tested Concentrations: 10 and 100 nM
Incubation Duration: 24 and 48 hrs (hours)
Experimental Results: PARP cleavage increased in DU145 cells, and the effect was mo
Animal Protocol
Animal/Disease Models: Nude mice with CWR22 xenografts [1]
Doses: 12 and 15 mg/kg
Route of Administration: po (oral gavage); 12 and 15 mg/kg for 5 days, 2 days off; 13 days after tumor transplantation Results by day 37: No effect on tumor growth, but enhanced the effect of docetaxel on tumors.
References

[1]. The novel toluidine sulphonamide EL102 shows pre-clinical in vitro and in vivoactivity against prostate cancer and circumvents MDR1 resistance. Br J Cancer, 2013 Oct 15, 109(8): 2131-2141.

These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C19H16N2O3S2
Molecular Weight
384.472
Exact Mass
384.06
CAS #
1233948-61-2
PubChem CID
62705067
Appearance
Light yellow to yellow solid powder
Density
1.4±0.1 g/cm3
Boiling Point
548.1±60.0 °C at 760 mmHg
Flash Point
285.3±32.9 °C
Vapour Pressure
0.0±1.5 mmHg at 25°C
Index of Refraction
1.669
LogP
5.01
Hydrogen Bond Donor Count
1
Hydrogen Bond Acceptor Count
6
Rotatable Bond Count
5
Heavy Atom Count
26
Complexity
616
Defined Atom Stereocenter Count
0
InChi Key
STJKZARVVAISJM-UHFFFAOYSA-N
InChi Code
InChI=1S/C19H16N2O3S2/c1-13-3-4-14(15-9-17(11-20)25-12-15)10-19(13)21-26(22,23)18-7-5-16(24-2)6-8-18/h3-10,12,21H,1-2H3
Chemical Name
N-(5-(5-cyanothiophen-3-yl)-2-methylphenyl)-4-methoxybenzenesulfonamide
Synonyms
EL102; EL-102; EL 102.
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ≥ 36 mg/mL (~93.64 mM)
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.6010 mL 13.0049 mL 26.0098 mL
5 mM 0.5202 mL 2.6010 mL 5.2020 mL
10 mM 0.2601 mL 1.3005 mL 2.6010 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Biological Data
  • EL102


    Impact of EL102 and docetaxel on prostate cancer cell line viabilityin vitro.(A) Chemical structure of EL102. (B) Dose response effects of EL102 on prostate cancer cell line viability over 72-h exposure. (C) Dose response effects of docetaxel on prostate cancer cell line viability over 72-h exposure. (D) Effect of EL102 on doxorubicin and docetaxel-resistant DLKPA lung cancer cell line viabilityvsDLKP parental lung cancer cell line.

  • EL102


    Impact of EL102 and docetaxel alone and in combination on CWR22 xenograft tumour volume.Br J Cancer. 2013 Oct 15; 109(8): 2131–2141.

  • EL102


    Induction of cellular apoptosis by EL102 and docetaxel.Br J Cancer. 2013 Oct 15; 109(8): 2131–2141.

  • EL102


    Impact of EL102 and docetaxel combination treatment on prostate cancer cell line viabilityin vitro.


    EL102

    EL102 inhibits Hif1αin normoxia and hypoxia.Br J Cancer. 2013 Oct 15; 109(8): 2131–2141.

  • EL102


    Cell cycle analysis of DU145 cell accumulation in G1, S, G2/M and subG1after EL102, docetaxel or combination treatment.


    EL102

    Representative cell cycle analysis of dose response effects of EL102-treated DU145.Br J Cancer. 2013 Oct 15; 109(8): 2131–2141.

  • EL102


    Impact of EL102 and docetaxel alone and in combination on tubulin polymerisation activity.


    EL102

    Effect of EL102 on microtubule destabilisation.Br J Cancer. 2013 Oct 15; 109(8): 2131–2141.

Contact Us