Size | Price | Stock | Qty |
---|---|---|---|
2mg |
|
||
5mg |
|
||
10mg |
|
||
25mg |
|
||
50mg |
|
||
100mg |
|
||
Other Sizes |
|
Purity: ≥98%
Eleclazine hydrochloride (also known as GS-6615) is a novel late Na+ current inhibitor with IC50 value of 0.7 uM. Enhanced late Na+ current (late INa ) in the myocardium is pro-arrhythmic. Inhibition of this current is a promising strategy to stabilize ventricular repolarization and suppress arrhythmias. Eleclazine was a selective inhibitor of late INa , stabilizes the ventricular repolarization and suppresses arrhythmias in a model of LQT3. The concentrations at which the electrophysiological effects of Eleclazine were observed are comparable to plasma levels associated with QTc shortening in patients with LQT3, indicating that these effects are clinically relevant. Eleclazine is currently in clinical development for the treatment of long QT syndrome 3 (LQT3).
ln Vitro |
With an IC50 of 2.5 μM, eleclazine inhibits sodium current in cardiomyocytes derived from hiPSCs[3].
|
---|---|
ln Vivo |
Eleclazine (0.3 and 0.9 mg/kg; IV; infused over 15 minutes) shortens the atrial PTa and ventricular QT intervals and lowers the frequency of ventricular premature beats and couplets caused by epinephrine[1].
|
Animal Protocol |
Animal/Disease Models: Male Yorkshire pigs (35.20 ± 0.46 kg; injected with epinephrine via a jugular vein)[1]
Doses: 0.3 and 0.9 mg/kg Route of Administration: IV; infused over 15 minutes Experimental Results: decreased the incidence of epinephrine-induced ventricular premature beats and couplets by 51% (from 31.3 shortened ventricular QT and atrial PTa intervals by 7%, and decreased atrial repolarization alternans and heterogeneity without attenuation of the inotropic response to catecholamine. |
References |
|
Molecular Formula |
C₂₁H₁₇CLF₃N₃O₃
|
|
---|---|---|
Molecular Weight |
451.83
|
|
Exact Mass |
451.091
|
|
Elemental Analysis |
C, 55.82; H, 3.79; Cl, 7.85; F, 12.61; N, 9.30; O, 10.62
|
|
CAS # |
1448754-43-5
|
|
Related CAS # |
1443211-72-0;1448754-43-5 (HCl);
|
|
PubChem CID |
90479986
|
|
Appearance |
White to off-white solid powder
|
|
Hydrogen Bond Donor Count |
1
|
|
Hydrogen Bond Acceptor Count |
8
|
|
Rotatable Bond Count |
4
|
|
Heavy Atom Count |
31
|
|
Complexity |
578
|
|
Defined Atom Stereocenter Count |
0
|
|
SMILES |
Cl[H].FC(OC1C([H])=C([H])C(=C([H])C=1[H])C1C([H])=C([H])C2=C(C=1[H])C(N(C([H])([H])C1=NC([H])=C([H])C([H])=N1)C([H])([H])C([H])([H])O2)=O)(F)F
|
|
InChi Key |
ZRYHNOXHGYUHFF-UHFFFAOYSA-N
|
|
InChi Code |
InChI=1S/C21H16F3N3O3.ClH/c22-21(23,24)30-16-5-2-14(3-6-16)15-4-7-18-17(12-15)20(28)27(10-11-29-18)13-19-25-8-1-9-26-19;/h1-9,12H,10-11,13H2;1H
|
|
Chemical Name |
4-(pyrimidin-2-ylmethyl)-7-[4-(trifluoromethoxy)phenyl]-2,3-dihydro-1,4-benzoxazepin-5-one;hydrochloride
|
|
Synonyms |
|
|
HS Tariff Code |
2934.99.03.00
|
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month Note: Please store this product in a sealed and protected environment, avoid exposure to moisture. |
|
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
|
|||
---|---|---|---|---|
Solubility (In Vivo) |
Solubility in Formulation 1: ≥ 2.5 mg/mL (5.53 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL. Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution. Solubility in Formulation 2: ≥ 2.5 mg/mL (5.53 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution. For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 25.0 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly. Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution. View More
Solubility in Formulation 3: ≥ 2.5 mg/mL (5.53 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution. |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 2.2132 mL | 11.0661 mL | 22.1322 mL | |
5 mM | 0.4426 mL | 2.2132 mL | 4.4264 mL | |
10 mM | 0.2213 mL | 1.1066 mL | 2.2132 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.