yingweiwo

Emetine

Alias: EMETINE; 483-18-1; Emetin; Cephaeline methyl ether; Methyl cephaeline; 6',7',10,11-Tetramethoxyemetan; (-)-Emetine; Cephaline-O-methyl ether;
Cat No.:V20504 Purity: ≥98%
Emetine is a novel and potent bioactive compound
Emetine
Emetine Chemical Structure CAS No.: 483-18-1
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
10mg
25mg
50mg

Other Forms of Emetine:

  • Emetine Hydrochloride Hydrate
  • Emetine Hydrochloride
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
Emetine is a natural product isolated from the ipecac root. It is an antiprotozoal agent and emetic drug. It inhibits SARS-CoV2, Zika and Ebola virus replication and displays antimalarial, antineoplastic and antiamoebic properties. It has a role as an antiprotozoal drug, a plant metabolite, an antiviral agent, an emetic, a protein synthesis inhibitor, an antimalarial, an antineoplastic agent, an autophagy inhibitor, an antiinfective agent, an expectorant, an anticoronaviral agent and an antiamoebic agent. It is a pyridoisoquinoline and an isoquinoline alkaloid. It is functionally related to a cephaeline.
Biological Activity I Assay Protocols (From Reference)
Targets
Natural product/phenolic alkaloid; anti-protozoal; anticancer; antiviral; Zika virus (ZIKV); Ebola virus (EBOV)
ln Vitro
The natural extracted agent emetine reportedly has anticancer effects. This study aimed to explore the possible role of emetine in cisplatin resistance. We used cell viability, Western blot, and Wnt reporter assays to show that emetine suppresses proliferation, β-catenin expression, and Wnt/β-catenin signaling in non-small cell lung cancer (NSCLC). The synergism of emetine and cisplatin was assessed by constructing isobolograms and calculating combination index (CI) values using the Chou-Talalay method. Emetine effectively synergized with cisplatin to suppress the proliferation of cancer cells. Furthermore, nuclear β-catenin and cancer stem cell-related markers were upregulated in the cisplatin-resistant subpopulation of CL1-0 cells. Emetine enhanced the anticancer efficacy of cisplatin and synergized with cisplatin in the cisplatin-resistant subpopulation of CL1-0 cells. Taken together, these data suggest that emetine could suppress the growth of NSCLC cells through the Wnt/β-catenin pathway and contribute to a synergistic effect in combination with cisplatin[1].
In this study, we show that emetine, an anti-protozoal agent, potently inhibits ZIKV and EBOV infection with a low nanomolar half maximal inhibitory concentration (IC50) in vitro[2].
ln Vivo
This study tested the protective efficacy of Emetine in an EBOV mouse model. Six to eight week-old, female BALB/c mice (n = 6 per group) were injected IP with 1000-times the mean lethal dose for 50% (LD50) of mouse-adapted Ebola virus (MA-EBOV). Before infection with MA-EBOV, mice were then treated either with emetine (1 mg/kg/day), cephaeline (5 mg/kg/day) or VC (in the control group) starting 3 h before viral innoculation via IP. After IP administration of MA-EBOV, mice continued treatment with emetine, cephaeline, or VC IP for 7 more days. The animals were monitored daily for survival. As expected, all of the control animals uniformly succumbed to EBOV infection with a mean time to death of 8.33 ± 1.03 d.p.i. In contrast, for 67%, or four out of six mice, survival was achieved in both treated groups (Fig. 4c and Supplementary Figure S5e-f). Similar to the effects of emetine and cephaeline treatment in ZIKV infection, the drugs effectively suppressed EBOV infection in vivo.[2]
Enzyme Assay
In vitro RNA polymerase assays[2]
An RNA polymerase assay kit was purchased from Profoldin. RNA synthesis assays were performed in 10 µL of reactions following the manufacturer’s instructions. After 23 ng of purified Zika NS5 was added into 384-well small-volume plate in 3 µL, serial dilutions of emetine were added into the wells in 3 µL. The mixtures were pre-incubated for 30 mins at room temperature. A master mix containing single-stranded polyribonucleotide, 10 µM of NTP mix, 20 mM Tris–HCl, pH 8.0, 1 mM DTT, and 8 mM MgCl2 was added into each well in 4 µL. The reactions were incubated at 37 °C for 1 h and then stopped by adding the fluorescence dye in 10 µL. The fluorescence intensities (Ex = 485 ± 5, Em = 535 ± 10 nm) were measured using a Tecan plate reader.
Cell Assay
The inhibition assay was performed as described previously. In brief, Vero E6 cells were pre-treated with emetine or cephaeline (0–2.0 µM) or DMEM alone for 1 h at 37 °C, and infected with a MOI = 0.1 of GFP-expressing EBOV in the presence of emetine, cephaeline or DMEM alone for 1 h at 37 °C. Cells were then further incubated for 72 h in the presence of Emetine, Cephaeline or DMEM. At 72 h, the green fluorescent protein signal was quantified on a Biotek Synergy HTX plate reader. Infection was determined by comparing fluorescence readings of emetine or cephaeline-treated infected cells to DMEM-treated controls. The EC50 and EC90 values were calculated using a four-parameter logistic regression in Prism 5[2].
Animal Protocol
Evaluating the protective efficacy of emetine and cephaeline against MA-EBOV in mice[2]
Six to eight week-old BALB/C mice, female, were randomly assigned into groups (6 per group). All the mice were challenged with a dose of 1000 times the lethal dose (LD50) MA- EBOV via IP. Treatments with either emetine (1 mg/kg/day) or cephaeline (5 mg/kg/day) or PBS (same volume) for the control group were initiated at 3 h prior to challenge and continued for up to 6 d.p.i. All animals were monitored for signs of disease and weight change for 14 days post challenge, and survival for additional 14 days.
ADME/Pharmacokinetics
Absorption, Distribution and Excretion
EMETINE IS ABSORBED FROM PARENTERAL SITES OF ADMINISTRATION & IS EXCRETED ... SLOWLY.
ALTHOUGH DRUG APPEARS IN URINE 20-40 MIN AFTER INJECTION, EMETINE CAN STILL BE FOUND THERE 40-60 DAYS AFTER TREATMENT HAS BEEN DISCONTINUED. ... HIGHEST CONCN OF ALKALOID IS FOUND IN LIVER ... APPRECIABLE AMT ARE ALSO FOUND IN LUNG, KIDNEY, & SPLEEN.
... EMETINE SHOWS A PREDILECTION FOR ACCUMULATING IN MUSCULAR ORGANS ... .
Metabolism / Metabolites
AMINOACYLATION OF EMETINE
Emetine undergoes slow hepatic metabolism, with urine metabolites detectable for 40-60 days ... .
Toxicity/Toxicokinetics
Interactions
IN ISOLATED RAT FUNDUS SMOOTH MUSCLE, PRETREATMENT FOR 10 MIN WITH 5-15 UG EMETINE ANTAGONIZED THE INCREASED CONTRACTIONS INDUCED BY PROSTAGLANDIN E2. MAX INHIBITION WAS OBTAINED WITH 10 AND 15 UG EMETINE.
References
[1]. Emetine Synergizes with Cisplatin to Enhance Anti-Cancer Efficacy against Lung Cancer Cells. Int J Mol Sci. 2019 Nov 25;20(23):5914.
[2]. Emetine inhibits Zika and Ebola virus infections through two molecular mechanisms: inhibiting viral replication and decreasing viral entry. Cell Discov. 2018 Jun 5;4:31.
Additional Infomation
Emetine is a pyridoisoquinoline comprising emetam having methoxy substituents at the 6'-, 7'-, 10- and 11-positions. It is an antiprotozoal agent and emetic. It inhibits SARS-CoV2, Zika and Ebola virus replication and displays antimalarial, antineoplastic and antiamoebic properties. It has a role as an antiprotozoal drug, a plant metabolite, an antiviral agent, an emetic, a protein synthesis inhibitor, an antimalarial, an antineoplastic agent, an autophagy inhibitor, an antiinfective agent, an expectorant, an anticoronaviral agent and an antiamoebic agent. It is a pyridoisoquinoline and an isoquinoline alkaloid. It is functionally related to a cephaeline. It is a conjugate base of an emetine(2+). It derives from a hydride of an emetan.
Emetine has been reported in Alangium salviifolium, Hedera helix, and other organisms with data available.
Emetine Hydrochloride is the chloride salt of a white crystalline bitter alkaloid isolated from the root of the plant Psychotria Ipecacuanha (ipecac root) and other plants with antiemetic and anthelminthic properties. Emetine inhibits protein synthesis in eukaryotic (but not prokaryotic) cells by irreversibly blocking ribosome movement along the mRNA strand and inhibits DNA replication in the early S phase of the cell cycle. (NCI04)
The principal alkaloid of ipecac, from the ground roots of Uragoga (or Cephaelis) ipecacuanha or U. acuminata, of the Rubiaceae. It is used as an amebicide in many different preparations and may cause serious cardiac, hepatic, or renal damage and violent diarrhea and vomiting. Emetine inhibits protein synthesis in EUKARYOTIC CELLS but not PROKARYOTIC CELLS.
Mechanism of Action
EMETINE PREVENTED PROTEIN SYNTHESIS /IN ANIMAL CELLS/ BY INHIBITING TRANSLOCATION OF PEPTIDYL-TRNA FROM ACCEPTOR SITE TO DONOR SITE ON RIBOSOME. EMETINE ... INHIBITS PROTEIN SYNTHESIS IN EUKARYOTES BUT NOT IN PROCARYOTES.
Emetine is a direct myotoxin that inhibits protein synthesis, disrupts mitochondrial oxidative phosphorylation, and produces both skeletal and cardiac myopathies.
EMETINE CAUSES DEGENERATION OF NUCLEUS & RETICULATION OF CYTOPLASM OF AMEBAE; IT IS THOUGHT TO ERADICATE PARASITES BY INTERFERING WITH MULTIPLICATION OF TROPHOZOITES.
Therapeutic Uses
Amebicides; Antinematodal Agents; Protein Synthesis Inhibitors
... /IT/ IS USED IN THE TREATMENT OF ACUTE AMEBIC DYSENTERY, AMEBIC HEPATITIS, AND AMEBIC ABSCESSES OF THE LIVER AND OTHER ORGANS. ... /IT/ HAS NO EFFECT ON CYSTS.
IN AMEBIC HEPATITIS TOTAL AMT OF EMETINE /GIVEN/ IS LARGER /THAN THAT FOR AMEBIASIS/ ... REST PERIOD OF 1 WEEK, TOGETHER WITH ORAL THERAPY OF DIIODOHYDROXYQUIN OR GLYCOBIARSOL (MILIBIS) OR ANOTHER SIMILAR AGENT.
VALID USES OF EMETINE IN INTESTINAL AMEBIASIS ARE FOR SEVERE CASES OF AMEBIC DIARRHEA & ACUTE AMEBIC DYSENTERY, THAT IS WHEN TROPHOZOITES ARE FOUND IN THE STOOL.
For more Therapeutic Uses (Complete) data for EMETINE (10 total), please visit the HSDB record page.
Drug Warnings
Patients ... should remain sedentary, they require close medical supervision (including electrocardiographic monitoring).
EMETINE-INDUCED DIARRHEA MAY BE MISTAKEN FOR EXACERBATION OF AMEBIC DYSENTERY, FROM WHICH IT CAN ... BE DIFFERENTIATED BY THE FACT THAT PERIOD OF IMPROVEMENT ... OFTEN PRECEDES DIARRHEA.
PRECORDIAL PAIN CAUSED BY EMETINE MAY RESEMBLE THAT OF CORONARY THROMBOSIS, FROM WHICH IT REQUIRES DIFFERENTIATION. ... TACHYCARDIA ... FREQUENTLY PRECEDES ... ECG ABNORMALITIES. EMETINE SHOULD BE DISCONTINUED AS SOON AS /IT/ ... IS EVIDENT.
DRUG SHOULD BE STOPPED UPON APPEARANCE OF ... NEUROMUSCULAR SYMPTOMS, MARKED GI EFFECTS, OR CONSIDERABLE WEAKNESS.
For more Drug Warnings (Complete) data for EMETINE (17 total), please visit the HSDB record page.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C29H40N2O4
Molecular Weight
480.65
Exact Mass
516.275
Elemental Analysis
C, 72.47; H, 8.39; N, 5.83; O, 13.31
CAS #
483-18-1
Related CAS #
316-42-7 (HCl);483-18-1;2228-39-9 (2HCl);7083-71-8 (HCl hydrate); 316-42-7 (2HCl); 14198-59-5 (HCl)
PubChem CID
10219
Appearance
WHITE AMORPHOUS POWDER
Density
1.17g/cm3
Boiling Point
600.3ºC at 760mmHg
Melting Point
89-96ºC
Flash Point
316.9ºC
Source
ipecac root
LogP
6.012
Hydrogen Bond Donor Count
1
Hydrogen Bond Acceptor Count
6
Rotatable Bond Count
7
Heavy Atom Count
35
Complexity
679
Defined Atom Stereocenter Count
4
SMILES
COC1C=C2C([C@@H](C[C@@H]3[C@@H](CC)CN4[C@H](C5=CC(OC)=C(OC)C=C5CC4)C3)NCC2)=CC=1OC
InChi Key
AUVVAXYIELKVAI-CKBKHPSWSA-N
InChi Code
InChI=1S/C29H40N2O4/c1-6-18-17-31-10-8-20-14-27(33-3)29(35-5)16-23(20)25(31)12-21(18)11-24-22-15-28(34-4)26(32-2)13-19(22)7-9-30-24/h13-16,18,21,24-25,30H,6-12,17H2,1-5H3/t18-,21-,24+,25-/m0/s1
Chemical Name
(2S,3R,11bS)-2-[[(1R)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin-1-yl]methyl]-3-ethyl-9,10-dimethoxy-2,3,4,6,7,11b-hexahydro-1H-benzo[a]quinolizine
Synonyms
EMETINE; 483-18-1; Emetin; Cephaeline methyl ether; Methyl cephaeline; 6',7',10,11-Tetramethoxyemetan; (-)-Emetine; Cephaline-O-methyl ether;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
Solubility (In Vivo)
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.

Injection Formulations
(e.g. IP/IV/IM/SC)
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution 50 μL Tween 80 850 μL Saline)
*Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution.
Injection Formulation 2: DMSO : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO 400 μLPEG300 50 μL Tween 80 450 μL Saline)
Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO 900 μL Corn oil)
Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals).
View More

Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO 900 μL (20% SBE-β-CD in saline)]
*Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.
Injection Formulation 5: 2-Hydroxypropyl-β-cyclodextrin : Saline = 50 : 50 (i.e. 500 μL 2-Hydroxypropyl-β-cyclodextrin 500 μL Saline)
Injection Formulation 6: DMSO : PEG300 : castor oil : Saline = 5 : 10 : 20 : 65 (i.e. 50 μL DMSO 100 μLPEG300 200 μL castor oil 650 μL Saline)
Injection Formulation 7: Ethanol : Cremophor : Saline = 10: 10 : 80 (i.e. 100 μL Ethanol 100 μL Cremophor 800 μL Saline)
Injection Formulation 8: Dissolve in Cremophor/Ethanol (50 : 50), then diluted by Saline
Injection Formulation 9: EtOH : Corn oil = 10 : 90 (i.e. 100 μL EtOH 900 μL Corn oil)
Injection Formulation 10: EtOH : PEG300Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL EtOH 400 μLPEG300 50 μL Tween 80 450 μL Saline)


Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium)
Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose
Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals).
View More

Oral Formulation 3: Dissolved in PEG400
Oral Formulation 4: Suspend in 0.2% Carboxymethyl cellulose
Oral Formulation 5: Dissolve in 0.25% Tween 80 and 0.5% Carboxymethyl cellulose
Oral Formulation 6: Mixing with food powders


Note: Please be aware that the above formulations are for reference only. InvivoChem strongly recommends customers to read literature methods/protocols carefully before determining which formulation you should use for in vivo studies, as different compounds have different solubility properties and have to be formulated differently.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 2.0805 mL 10.4026 mL 20.8052 mL
5 mM 0.4161 mL 2.0805 mL 4.1610 mL
10 mM 0.2081 mL 1.0403 mL 2.0805 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
Evaluating Emetine for Viral Outbreaks (EVOLVE)
CTID: NCT05889793
Phase: Phase 2/Phase 3
Status: Recruiting
Date: 2024-05-16
Contact Us