yingweiwo

Entrectinib (NMS-E 628; RXDX101; ROZLYTREK)

Alias: Entrectinib, RXDX-101, NMS-E628; RXDX101; RXDX 101; Rozlytrek; RXDX-101; NMS-E628; Entrectinib (RXDX-101); entrectinibum; Entrectinib(rxdx-101); RXDX-101; NMS E628; NMS-E-628; trade name: ROZLYTREK
Cat No.:V0609 Purity: =99.03%
Entrectinib (formerly also known as NMS-E628; RXDX-101; trade nameROZLYTREK) is a potent and orally bioavailable small molecule inhibitor of TrkA, TrkB, TrkC, ROS1 and ALK with potential antitumor activity.
Entrectinib (NMS-E 628; RXDX101; ROZLYTREK)
Entrectinib (NMS-E 628; RXDX101; ROZLYTREK) Chemical Structure CAS No.: 1108743-60-7
Product category: ALK
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
1mg
5mg
10mg
25mg
50mg
100mg
250mg
500mg
1g
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
InvivoChem's Entrectinib (NMS-E 628; RXDX101; ROZLYTREK) has been cited by 2 publications
Purity & Quality Control Documentation

Purity: =99.03%

Purity: =99.03%

Product Description

Entrectinib (formerly also known as NMS-E628; RXDX-101; trade name ROZLYTREK) is a potent and orally bioavailable small molecule inhibitor of TrkA, TrkB, TrkC, ROS1 and ALK with potential antitumor activity. With respective IC50 values of 1, 3, 5, 12, and 7 nM, it inhibits the kinases listed above. The US FDA approved entrectinib in 2019 for the treatment of NTRK fusion-positive solid tumors and ROS1-positive non-small cell lung cancer (NSCLC). In May 2020, Australia approved it for NSCLC, and in July 2020, the European Union approved it as well.

Biological Activity I Assay Protocols (From Reference)
Targets
TrkA (IC50 = 1 nM); TrkB (IC50 = 3 nM); TrkC (IC50 = 5 nM); ROS1 (IC50 = 12 nM); ALK (IC50 = 7 nM)
ln Vitro
Entrectinib potently inhibits ALK-dependent signaling and specifically prevents the proliferation of ALK-dependent cell lines. Entrectinib also significantly suppresses the NSCLC cell line NCI-H2228, which has an EML4-ALK rearrangement, in terms of cell growth. [2]
ln Vivo
Entrectinib (p.o.) causes total tumor regression in mice with xenografts of Karpas-299 and SR-786. Entrectinib causes the tumor masses seen in the lymph nodes and thymus of NPM-ALK transgenic mice to completely disappear.[2]
Entrectinib cotreatment increased the effectiveness of traditional chemotherapy in the NB xenograft model.[2]
In vivo, NMS‐E628 induced complete tumor regression when administered orally for ten consecutive days to SCID mice bearing Karpas‐299 or SR‐786 xenografts, with ex vivo analyses demonstrating dose‐dependent target modulation that was maintained for up to 18 hours after single treatment. NMS‐E628 was also highly efficacious in a transgenic mouse leukemia model in which human NPM‐ALK expression was targeted to T cells. In this latter model, which faithfully recapitulates pathological features of human ALCL, treatment of NPM‐ALK transgenic mice with NMS‐E628 for as little as 3 consecutive days induced complete regression of tumor masses observed in the thymus and in lymph nodes.[3]
Enzyme Assay
Entrectinib inhibits TrkA, TrkB, TrkC, ROS1, and ALK with IC50 values of 1, 3, 5, 12, and 7 nM, respectively. It is a strong and readily available oral inhibitor of Trk, ROS1, and ALK.
The chromosomal translocation t(2;5)(p23;q35) involving the ALK tyrosine kinase gene results in expression of the NPM‐ALK fusion protein which represents the driving force for survival and proliferation of a subset of Anaplastic Large Cell Lymphoma. More recently, a distinct chromosomal rearrangement of the ALK gene leading to a new fusion variant EML4‐ALK, has been identified as a low frequency event, mutually exclusive with respect to EGFR and K‐ras mutation, in Non Small Cell Lung cancer patients. As previously found for NPM‐ALK, this new fusion variant has constitutively active ALK kinase and was demonstrated to have strong oncogenic potential. Taken together these findings support the hypothesis that ALK represents an innovative and valuable target for cancer therapy both in ALCL and NSCLC patients whose tumors harbor translocated ALK.[3]
Here we further describe the preclinical characterization of NMS‐E628, an orally available small‐molecule inhibitor of ALK kinase activity. Proliferation profiling on a wide panel of human tumor cell lines demonstrated that the compound selectively blocks proliferation of ALK‐dependent cell lines and potently inhibits ALK‐dependent signaling. [3]
Cell Assay
Plated in 96-well plates, NLF, NLF-TrkB, SY5Y, or SY5Y-TrkB cells are subjected to varying concentrations of entrectinib (1, 5, 10, 20, 30, 50, and 100 nM, 1.5 μM Irino, and 50 μM TMZ, respectively) for a duration of one hour. Subsequently, 100 ng/mL of BDNF is added. After the drug is added, plates are harvested 24, 48, and 72 hours later. The plates are prepared, and an SRB assay protocol is used to analyze the cell viability.
In Vitro Experiments and Western Blot Analysis[6]
To determine the inhibitory effect of entrectinib on TrkB phosphorylation, cells were grown in 10 cm3 dishes to 70–80% confluence under standard culture conditions. Cells were serum starved in 2% FBS medium for 2 hr before being exposing to different concentrations of entrectinib (10 - 200 nM) for 1 hr. Cells were stimulated with 100 ng/mL of the TrkB ligand, BDNF for 15 minutes before total protein was harvested for analysis by Western blots. Trk expression was confirmed using anti-Phospho Trk antibody (p-Trk, Tyr-490) or anti-Pan-Trk antibody. Downstream signaling inhibition was analyzed using anti-phospho-Akt, anti-phospho-Erk1/2 antibodies, total Akt and anti-Erk1/2 and actin was used as loading control.
Sulforhodamine B (SRB) assay[6]
Sulforhodamine B (SRB) assays were performed to determine the effect of entrectinib as a single agent and in combination with Irino-TMZ on the survival and growth of TrkB-expressing NB cells. NLF, NLF-TrkB, SY5Y or SY5Y-TrkB cells (5×103/per well) were plated in 96 well plates, and they were exposed to drug at different concentrations (1, 5, 10, 20, 30, 50 and 100 nM of entrectinib, 1.5 μM Irino and 50 μM TMZ, respectively) for one hr followed by addition of 100 ng/mL of BDNF. Plates were harvested at 24, 48, and 72 hr following addition of drug. The plates were processed and cell viability was analyzed using a standard SRB assay protocol. All in vitro experiments were performed in triplicate and repeated at least 3 times.
Animal Protocol
Male C57BL/6 mice (6-8 weeks old, 20-25 g; Bleomycin-induced pulmonary fibrosis model)[1].
20, 40, 60 mg/kg
Intragastric Administration; single daily for 7 days.
Entrectinib (RXDX-101) is an orally available small molecule inhibitor of pan-Trk, Alk and Ros1 tyrosine kinases. It was dissolved in DMSO to obtain stocks for in vitro studies. For in vivo experiments, it was reconstituted in 0.5% methylcellulose (viscosity 400cP, 2% in H2O) containing 1% Tween 80 at a final dosing volume of 10 ml/kg (e.g., 0.2 ml for a 20 gm mouse). Entrectinib solution was stirred at RT for 30 min, and then sonicated in a water bath sonicator for 20 min. This formulation was made fresh every week. Animals were dosed BID, 7 days/week at 60 mg/kg.[6]
In Vivo Experiments[6]
For the xenograft studies, animals were injected subcutaneously in the flank with 1 × 107 SY5Y-TrkB cells in 0.1 ml of Matrigel (BD Bioscience, Palo Alto, CA). Tumors were measured 2 times per week in 3 dimensions, and the volume calculated as follows: [(0.523xLxWxW)/1000]. Body weights were measured at least twice a week, and the dose of compound was adjusted accordingly. Treatment with entrectinib, Irino and TMZ started about 15–17 days after tumor inoculation when the average tumor size was 0.2 cm3. Mice were sacrificed when tumor volume reached 3 cm3. Tumors were harvested and flash frozen on dry ice for analysis of protein expression using Western blot. Tumor lysates were obtained using Fast Prep 24 System in the presence of a protease inhibitor cocktail and phosphatase inhibitor cocktail. The following antibodies were used for the Western blot: anti-TrkB (Abcam), anti-phospho- TrkB (Tyr816); anti-Trk (pan-Trk); anti-phospho-Akt (Ser473); anti-Akt; anti-phosphop44/42 Erk (Thr202/Tyr204); anti-p44/42 Erk; anti-Phospho-PLCγ1 (Tyr783) and anti- PLCγ1. Plasma was obtained at different times points after dosing for PK/PD studies.[6]
Pharmacokinetic studies[6]
Entrectinib was dosed at 60 mg/kg BID, for the entire duration of the study. After the final dose was given, the blood samples were drawn from 4 mice per time point via retro-orbital bleeding and collected in heparinized tubes on wet ice. The plasma was then separated by centrifugation at 1200 g for 10 minutes at 4°C. The concentration of entrectinib (free base) was measured by LC-MS-MS. The pharmacokinetic analysis was performed using the Watson system, and plotted using GraphPad Prism (mean ±SD).
ADME/Pharmacokinetics
Absorption, Distribution and Excretion
Entrectinib has a Tmax of 4-5 h after administration of a single 600 mg dose. Food does not produce a significant effect on the extent of absorption.
After a single radio-labeled dose of entrectinib, 83% of radioactivity was present in the feces and 3% in the urine. Of the dose in the feces, 36% was present as entrectinib and 22% as M5.
Entrectinib has an apparent volume of distribution of 551 L. The active metabolite, M5, has an apparent volume of distribution of 81.1 L. Entrectinib is known to cross the blood-brain barrier.
The apparent clearance of entrectinib is 19.6 L/h while the apparent clearance of the active metabolite M5 is 52.4 L/h.
Metabolism / Metabolites
CYP3A4 is responsible for 76% of entrectinib metabolism in humans including metabolism to the active metabolite, M5. M5 has similar pharmacological activity to entrectinib and exists at approximately 40% of the steady state concentration of the parent drug. In rats, six in vivo metabolites have been identified including N-dealkylated, N-oxide, hydroxylated, and glucuronide conjugated metabolites.
Biological Half-Life
Entrectinib has a half-life of elimination of 20 h. The active metabolite, M5, has a half-life of 40 h.
Toxicity/Toxicokinetics
Hepatotoxicity
In the prelicensure clinical trials of entrectinib in patients with NTRK fusion gene positive solid tumors and ROS1 fusion gene positive non-small cell lung cancer, liver test abnormalities were frequent although usually mild. Some degree of ALT elevation arose in 38% of entrectinib treated patients, but were above 5 times the upper limit of normal (ULN) in only 2% to 3% (although the incidence may have been underestimated as 4.5% of patients had no post-treatment liver function tests). In these trials that enrolled approximately 355 patients, entrectinib was discontinued early due to increased AST or ALT in 0.8% of patients. Thus, in preregistration trials of entrectinib there were no instances of clinically apparent liver injury with jaundice, but therapy was associated with a high rate of serum ALT elevations and the total clinical experience with its use has been limited. The product label for entrectinib recommends monitoring for routine liver tests before, at 2 week intervals during the first month of therapy, and monthly thereafter as clinically indicated.
Likelihood score: E* (unproven but suspect rare cause of clinically apparent liver injury).
Protein Binding
Entrectinib is over 99% bound to plasma proteins.
References

[1]. Expert Opin Investig Drugs. 2015;24(11):1493-500.

[2]. Cancer Res (2015) 75 (15_Supplement): 5390.

[2]. Mol Cancer Ther (2009) 8 (12_Supplement): A244.

[4]. Thorac Cancer. 2022 Nov;13(21):3032-3041.

[5]. Clin Cancer Res. 2021 Feb 15;27(4):1184-1194.

[6]. Cancer Lett. 2016 Mar 28;372(2):179-86.

Additional Infomation
Pharmacodynamics
Entrectinib and its active metabolite suppress several pathways which contribute to cell survival and proliferation. This suppression shifts the balance in favor of apoptosis thereby preventing cancer cell growth and shrinking tumors.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C31H34F2N6O2
Molecular Weight
560.64
Exact Mass
560.271
Elemental Analysis
C, 66.41; H, 6.11; F, 6.78; N, 14.99; O, 5.71
CAS #
1108743-60-7
Related CAS #
1108743-60-7
PubChem CID
25141092
Appearance
Off-white to light yellow solid powder
Density
1.3±0.1 g/cm3
Boiling Point
717.5±60.0 °C at 760 mmHg
Flash Point
387.7±32.9 °C
Vapour Pressure
0.0±2.3 mmHg at 25°C
Index of Refraction
1.672
LogP
5.66
Hydrogen Bond Donor Count
3
Hydrogen Bond Acceptor Count
8
Rotatable Bond Count
7
Heavy Atom Count
41
Complexity
847
Defined Atom Stereocenter Count
0
SMILES
FC1C([H])=C(C([H])=C(C=1[H])C([H])([H])C1C([H])=C([H])C2=C(C=1[H])C(=NN2[H])N([H])C(C1C([H])=C([H])C(=C([H])C=1N([H])C1([H])C([H])([H])C([H])([H])OC([H])([H])C1([H])[H])N1C([H])([H])C([H])([H])N(C([H])([H])[H])C([H])([H])C1([H])[H])=O)F
InChi Key
HAYYBYPASCDWEQ-UHFFFAOYSA-N
InChi Code
InChI=1S/C31H34F2N6O2/c1-38-8-10-39(11-9-38)25-3-4-26(29(19-25)34-24-6-12-41-13-7-24)31(40)35-30-27-17-20(2-5-28(27)36-37-30)14-21-15-22(32)18-23(33)16-21/h2-5,15-19,24,34H,6-14H2,1H3,(H2,35,36,37,40)
Chemical Name
N-[5-[(3,5-difluorophenyl)methyl]-1H-indazol-3-yl]-4-(4-methylpiperazin-1-yl)-2-(oxan-4-ylamino)benzamide
Synonyms
Entrectinib, RXDX-101, NMS-E628; RXDX101; RXDX 101; Rozlytrek; RXDX-101; NMS-E628; Entrectinib (RXDX-101); entrectinibum; Entrectinib(rxdx-101); RXDX-101; NMS E628; NMS-E-628; trade name: ROZLYTREK
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: ~100 mg/mL (~178.4 mM)
Water: <1 mg/mL
Ethanol: ~100 mg/mL (~178.4 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.5 mg/mL (4.46 mM) (saturation unknown) in 5% DMSO + 40% PEG300 + 5% Tween80 + 50% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.5 mg/mL (4.46 mM) (saturation unknown) in 5% DMSO + 95% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.08 mg/mL (3.71 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.


Solubility in Formulation 4: 2.08 mg/mL (3.71 mM) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), suspension solution; with ultrasonication.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

Solubility in Formulation 5: ≥ 2.08 mg/mL (3.71 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.

Solubility in Formulation 6: 5 mg/mL (8.92 mM) in 0.5% MC 0.5% Tween-80 (add these co-solvents sequentially from left to right, and one by one), suspension solution; with ultrasonication.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.7837 mL 8.9184 mL 17.8368 mL
5 mM 0.3567 mL 1.7837 mL 3.5674 mL
10 mM 0.1784 mL 0.8918 mL 1.7837 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Clinical Trial Information
NCT Number Recruitment interventions Conditions Sponsor/Collaborators Start Date Phases
NCT04589832 Active
Recruiting
Drug: PAC-1
Drug: Entrectinib
Uveal Melanoma Arkadiusz Z. Dudek, MD January 11, 2021 Phase 1
Phase 2
NCT02568267 Active
Recruiting
Drug: Entrectinib Breast Cancer
Melanoma
Hoffmann-La Roche November 19, 2015 Phase 2
NCT02650401 Active
Recruiting
Drug: Entrectinib Solid Tumors
CNS Tumors
Hoffmann-La Roche May 3, 2016 Phase 1
Phase 2
NCT05770544 Recruiting Drug: Entrectinib Solid Tumor
Cancer
Cancer Research UK December 2023 Phase 2
Phase 3
NCT03994796 Recruiting Drug: Entrectinib
Drug: Adagrasib
CDK Gene Mutation
PI3K Gene Mutation
Alliance for Clinical Trials
in Oncology
August 15, 2019 Phase 2
Biological Data
  • Entrectinib

    Mechanism of action and in vivo activity of entrectinib in ALK-driven ALCL cell lines and xenograft models.2016 Apr;15(4):628-39.

  • Entrectinib

    In vivo activity of entrectinib in an NPM-ALK transgenic model.2016 Apr;15(4):628-39.

  • Entrectinib

    Activity of entrectinib against NCI-H2228 NSCLC tumors.2016 Apr;15(4):628-39.

Contact Us