yingweiwo

Epicatechin gallate

Alias: Epicatechin-3-O-gallate; (-)-Epicatechin gallate; 1257-08-5; Epicatechin gallate; (-)-epicatechingallate; (-)-Epicatechin-3-O-gallate; L-Epicatechin gallate; epicatechin monogallate; (-)-Epicatechin-3-gallate; Epicatechin 3-gallate; ECG
Cat No.:V20619 Purity: ≥98%
(-)-Epicatechin gallate (Epicatechin gallate) inhibits cyclooxygenase-1 (COX-1) with IC50 of 7.5 μM.
Epicatechin gallate
Epicatechin gallate Chemical Structure CAS No.: 1257-08-5
Product category: New1
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
10mg
25mg
50mg
100mg
250mg
500mg
Other Sizes

Other Forms of Epicatechin gallate:

  • Epicatechin
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
(-)-Epicatechin gallate (Epicatechin gallate) inhibits cyclooxygenase-1 (COX-1) with IC50 of 7.5 μM.
Biological Activity I Assay Protocols (From Reference)
Targets
COX-1/cyclooxygenase-1 (IC50 = 7.5 μM)
ln Vitro
(-)-Epicatechin gallate has an IC50 of 7.5 μM and >95% inhibitory action against cyclooxygenase-1 (COX-1) at 70 μg/mL[1].
ln Vivo
(-)-Epicatechin gallate, an active ingredient in Onpi-to, a herbal remedy made of five herbal medicines (dry ginger, ginseng, rhubarb, licorice, and tubers), is one of the components of rhubarb. A three-compartment model was able to fit the plasma concentration versus time curve in rats that had received an intravenous dose of (-)-epicatechin gallate (1.0 mg/kg). assessment of plasma epicatechin gallate's pharmacokinetic characteristics (ECG). The ECG's t1/2α, t1/2β, and t1/2γ are 0.038, 0.291, and 4.033 hours, respectively. The electrocardiogram's CLtot is 4.19 L/h • kg. 12.39 L/kg is the Vdss[2].
Enzyme Assay
Moderate consumption of wine is associated with a reduced risk of cancer. Grape plant cell cultures were used to purify 12 phenols: the stilbenoids trans-astringin, trans-piceid (2), trans-resveratroloside, trans-resveratrol, trans-piceatannol, cis-resveratroloside, cis-piceid, and cis-resveratrol; the flavans (+)-catechin, (-)-epicatechin, and epicatechin 3-O-gallate; and the flavan dimer procyanidin B2 3'-O-gallate. These compounds were evaluated for potential to inhibit cyclooxygenases and preneoplastic lesion formation in carcinogen-treated mouse mammary glands in organ culture. At 10 micrograms/ml, trans-astringin and trans-piceatannol inhibited development of 7,12-dimethylbenz[a]anthracene-induced preneoplastic lesions in mouse mammary glands with 68.8% and 76.9% inhibition, respectively, compared with untreated glands. The latter compound was the most potent of the 12 compounds tested in this assay, with the exception of trans-resveratrol (87.5% inhibition). In the cyclooxygenase (COX)-1 assay, trans isomers of the stilbenoids appear to be more active than cis isomers: trans-resveratrol [50% inhibitory concentration (IC50) = 14.9 microM, 96%] vs. cis-resveratrol (IC50 = 55.4 microM). In the COX-2 assay, among the compounds tested, only trans- and cis-resveratrol exhibited significant inhibitory activity (IC50 = 32.2 and 50.2 microM, respectively). This is the first report showing the potential cancer-chemopreventive activity of trans-astringin, a plant stilbenoid recently found in wine. trans-Astringin and its aglycone trans-piceatannol were active in the mouse mammary gland organ culture assay but did not exhibit activity in COX-1 and COX-2 assays. trans-Resveratrol was active in all three of the bioassays used in this investigation. These findings suggest that trans-astringin and trans-piceatannol may function as potential cancer-chemopreventive agents by a mechanism different from that of trans-resveratrol[1].
ADME/Pharmacokinetics
(-)-Epicatechin-3-O-gallate (ECG), a component of Rhei Rhizoma, is one of the active components of Onpi-to, a herbal medicine composed of five crude drugs (Rhei Rhizome, Glycyrrhizae Radix, Ginseng Radix, Zingiberis Rhizoma and Aconiti Tuber), which has been used in patients with chronic renal failure. Pharmacokinetics of ECG was investigated in male rats employing an HPLC-electrochemical detection method. 1. Following oral administration of ECG, ECG plasma levels revealed curves characterized by peaks at 0.065, 0.063 and 0.085 h corresponding to dosages of 12.5, 25.0 and 50.0 mg/kg at mean concentrations of 49.62, 212.89 and 464.04 ng/ml, respectively. Plasma levels subsequently declined bi-exponentially. ECG demonstrated nonlinear pharmacokinetics in terms of C(max) and AUC(0-inf). 2. The absolute bioavailability values (F) were 1.02, 1.47 and 3.30% at doses of 12.5, 25.0, and 50.0 mg/kg, respectively. 3. Following intravenous injection of ECG, plasma levels of ECG decreased with the gamma-elimination half-life (t(1/2gamma)) of 4.03 h. 4. Following oral administration of ECG, urinary levels of ECG were lower than the quantitation limit. Moreover, cumulative excretion of the metabolites, delta-(3,4-dihydroxyphenyl)-gamma-valerolactone and delta-(3-methoxy-4-hydroxyphenyl)-gamma-valerolactone, was 2.45 and 0.23% of dose, respectively, up to 30 h after dosing.[2]
References

[1]. Potential cancer-chemopreventive activities of wine stilbenoids and flavans extracted from grape (Vitis vinifera) cell cultures. Nutr Cancer. 2001;40(2):173-9.

[2]. Pharmacokinetics of (-)-epicatechin-3-O-gallate, an active component of Onpi-to, in rats. Biol Pharm Bull. 2003 May;26(5):608-12.

Additional Infomation
(-)-epicatechin-3-O-gallate is a gallate ester obtained by formal condensation of the carboxy group of gallic acid with the (3R)-hydroxy group of epicatechin. A natural product found in Parapiptadenia rigida. It has a role as a metabolite, an EC 3.2.1.1 (alpha-amylase) inhibitor and an EC 3.2.1.20 (alpha-glucosidase) inhibitor. It is a catechin, a gallate ester and a polyphenol. It is functionally related to a (-)-epicatechin and a gallic acid.
(-)-Epicatechin gallate has been reported in Camellia sinensis, Paeonia obovata, and other organisms with data available.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C22H18O10
Molecular Weight
442.37 Exact Mass
Exact Mass
442.089
Elemental Analysis
C, 59.73; H, 4.10; O, 36.17
CAS #
1257-08-5
Related CAS #
(-)-Epicatechin;490-46-0
PubChem CID
107905
Appearance
White to off-white solid powder
Density
1.8±0.1 g/cm3
Boiling Point
861.7±65.0 °C at 760 mmHg
Melting Point
257-258ºC
Flash Point
305.0±27.8 °C
Vapour Pressure
0.0±0.3 mmHg at 25°C
Index of Refraction
1.825
LogP
2.67
Hydrogen Bond Donor Count
7
Hydrogen Bond Acceptor Count
10
Rotatable Bond Count
4
Heavy Atom Count
32
Complexity
649
Defined Atom Stereocenter Count
2
SMILES
C1[C@H]([C@H](OC2=CC(=CC(=C21)O)O)C3=CC(=C(C=C3)O)O)OC(=O)C4=CC(=C(C(=C4)O)O)O
InChi Key
LSHVYAFMTMFKBA-TZIWHRDSSA-N
InChi Code
InChI=1S/C22H18O10/c23-11-6-14(25)12-8-19(32-22(30)10-4-16(27)20(29)17(28)5-10)21(31-18(12)7-11)9-1-2-13(24)15(26)3-9/h1-7,19,21,23-29H,8H2/t19-,21-/m1/s1
Chemical Name
[(2R,3R)-2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3,4-dihydro-2H-chromen-3-yl] 3,4,5-trihydroxybenzoate
Synonyms
Epicatechin-3-O-gallate; (-)-Epicatechin gallate; 1257-08-5; Epicatechin gallate; (-)-epicatechingallate; (-)-Epicatechin-3-O-gallate; L-Epicatechin gallate; epicatechin monogallate; (-)-Epicatechin-3-gallate; Epicatechin 3-gallate; ECG
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: This product requires protection from light (avoid light exposure) during transportation and storage.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ≥ 30 mg/mL (~67.82 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.17 mg/mL (4.91 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 21.7 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.17 mg/mL (4.91 mM) (saturation unknown) in 10% DMSO + 90% (20% SBE-β-CD in Saline) (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 21.7 mg/mL clear DMSO stock solution to 900 μL of 20% SBE-β-CD physiological saline solution and mix evenly.
Preparation of 20% SBE-β-CD in Saline (4°C,1 week): Dissolve 2 g SBE-β-CD in 10 mL saline to obtain a clear solution.

View More

Solubility in Formulation 3: ≥ 2.17 mg/mL (4.91 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 21.7 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.


 (Please use freshly prepared in vivo formulations for optimal results.)
Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us