Size | Price | |
---|---|---|
500mg | ||
1g |
Erythromycin dihyrate is a macrolide antibiotic isolated from actinomycete Streptomyces erythreus, acting by binding to bacterial 50S ribosomal subunits and inhibiting RNA-dependent protein synthesis by blockage of transpeptidation and/or translocation reactions, without affecting synthesis of nucleic acid. It exhibits a broad spectrum of antimicrobial activity as well as antitumor and neuroprotective effects.
ln Vitro |
P. falciparum cannot grow in the presence of erythromycin A dihydrate, having IC50 and IC90 values of 58.2 μM and 104.0 μM, respectively[1]. Erythromycin A dihydrate (10 μM, 100 μM; 24 h, 72 h) exhibits anti-inflammatory and antioxidant properties. It also inhibits the accumulation of 4-HNE (p<0.01) and 8-OHdG (p<0.01) and considerably lowers the production of TNF-α (p<0.01) and Iba-1 (p<0.01)[4].
|
---|---|
ln Vivo |
When given to mice at a dose of 5 mg/kg, erythromycin A dihydrate (0.1–50 mg/kg; 30-120 days) reduces the formation of tumors and lengthens their survival period[3]. Even 120 days after inoculation, animals protected by erythromycin A dihydrate (gastric intubation; 5 mg/kg) survive; however, a 50 mg/kg dose shortens the mean survival period in tumor-bearing mice by 4-5 days[3]. A single infusion of 50 mg/kg of erythromycin A dihydrate (ih) protects against brain ischemia reperfusion damage in a rat model[4].
|
Cell Assay |
Cell Viability Assay[4]
Cell Types: Embryos primary cortical neuron (from the cerebral cortices of 17-day-old Sprague-Dawley rat) Tested Concentrations: 10, 100 μM Incubation Duration: 24, 72 hrs (hours) Experimental Results: Improved the viability of cultured neuronal cells in vitro after 3 hrs (hours) oxygen-glucose deprivation (OGD). |
Animal Protocol |
Animal/Disease Models: Female ddY mice at the age of 6 weeks with EAC cells or CDF mice at the age of 6 weeks with P388 cells[3]
Doses: 0.1 mg/kg; 0.5 mg/kg; 10 mg/kg; 30 mg/kg; 50 mg/kg Route of Administration: Gastric intubation; 30-120 days Experimental Results: diminished tumor growth and prolonged the mean survival time of mice from the dose of 5 mg/kg, however, the 50 mg/kg dosage shortened the MST in tumorbearing mice. Animal/Disease Models: Male SD (Sprague-Dawley) rats (8weeks old, 250-300 g)[4] Doses: 50 mg/kg Route of Administration: subcutaneous (sc) single injection Experimental Results: decreased infarct volume and edema volume, improved neurological deficit. |
References |
[1]. Gribble MJ, et al. Erythromycin. Med Clin North Am. 1982 Jan;66(1):79-89.
[2]. Nakornchai S, et al. Activity of azithromycin or erythromycin in combination with antimalarial drugs against multidrug-resistant Plasmodium falciparum in vitro. Acta Trop. 2006 Dec;100(3):185-91. Epub 2006 Nov 28. [3]. Hamada K, et al. Antitumor effect of erythromycin in mice. Chemotherapy. 1995 Jan-Feb. 41(1):59-69. [4]. Katayama Y, et al. Neuroprotective effects of erythromycin on cerebral ischemia reperfusion-injury and cell viability after oxygen-glucose deprivation in cultured neuronal cells. Brain Res. 2014 Nov 7. 1588:159-67. |
Molecular Formula |
C₃₇H₇₁NO₁₅
|
---|---|
Molecular Weight |
769.96
|
Exact Mass |
751.472
|
CAS # |
59319-72-1
|
Related CAS # |
Erythromycin;114-07-8;Erythromycin stearate;643-22-1
|
PubChem CID |
88122
|
Appearance |
solid powder
|
Boiling Point |
818.4ºC at 760 mmHg
|
Flash Point |
448.8ºC
|
LogP |
1.721
|
Hydrogen Bond Donor Count |
6
|
Hydrogen Bond Acceptor Count |
15
|
Rotatable Bond Count |
7
|
Heavy Atom Count |
52
|
Complexity |
1180
|
Defined Atom Stereocenter Count |
18
|
SMILES |
O(C1C(C(CC(C)O1)N(C)C)O)C1C(C)(CC(C)C(C(C)C(C(C)(C(CC)OC(C(C)C(C1C)OC1CC(C)(C(C(C)O1)O)OC)=O)O)O)=O)O
|
InChi Key |
IWGQNYZQLVGGCS-INORWZNNSA-N
|
InChi Code |
InChI=1S/C37H67NO13.2H2O/c1-14-25-37(10,45)30(41)20(4)27(39)18(2)16-35(8,44)32(51-34-28(40)24(38(11)12)15-19(3)47-34)21(5)29(22(6)33(43)49-25)50-26-17-36(9,46-13)31(42)23(7)48-26;;/h18-26,28-32,34,40-42,44-45H,14-17H2,1-13H3;2*1H2/t18-,19-,20+,21+,22-,23+,24+,25-,26+,28-,29+,30-,31+,32-,34+,35-,36-,37-;;/m1../s1
|
Chemical Name |
(3R,4S,5S,6R,7R,9R,11R,12R,13S,14R)-6-[(2S,3R,4S,6R)-4-(dimethylamino)-3-hydroxy-6-methyloxan-2-yl]oxy-14-ethyl-7,12,13-trihydroxy-4-[(2R,4R,5S,6S)-5-hydroxy-4-methoxy-4,6-dimethyloxan-2-yl]oxy-3,5,7,9,11,13-hexamethyl-oxacyclotetradecane-2,10-dione;dihydrate
|
Synonyms |
Emycin HSDB 3074 Eryc-250HSDB-3074 Eryc-125HSDB3074 Erythromycin
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
DMSO: > 10 mM
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 1.2988 mL | 6.4938 mL | 12.9877 mL | |
5 mM | 0.2598 mL | 1.2988 mL | 2.5975 mL | |
10 mM | 0.1299 mL | 0.6494 mL | 1.2988 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.