Exemestane (FCE 24304; EXE)

Alias: FCE24304, PNU155971; PNU155971; PNU-155971; PNU 155971; FCE24304; FCE-24304; FCE 24304; Exemestane; US trade name: Aromasin.
Cat No.:V1800 Purity: ≥98%
Exemestane (formerly also known as FCE24304, PNU155971; FCE 24304; EXE), a drug usedin ER-positive breast cancer,is a synthetic and potent aromatase inhibitor, which inhibits human placental and rat ovarian aromatase with IC50 of 30 nM and 40 nM, respectively.
Exemestane (FCE 24304; EXE) Chemical Structure CAS No.: 107868-30-4
Product category: Aromatase
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
50mg
100mg
250mg
500mg
1g
10g
Other Sizes
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text

 

  • Business Relationship with 5000+ Clients Globally
  • Major Universities, Research Institutions, Biotech & Pharma
  • Citations by Top Journals: Nature, Cell, Science, etc.
Top Publications Citing lnvivochem Products
Purity & Quality Control Documentation

Purity: ≥98%

Product Description

Exemestane (formerly also known as FCE24304, PNU155971; FCE 24304; EXE), a drug used in ER-positive breast cancer, is a synthetic and potent aromatase inhibitor, which inhibits human placental and rat ovarian aromatase with IC50 of 30 nM and 40 nM, respectively. Exemestane binds irreversibly to and inhibits the enzyme aromatase, thereby blocking the conversion of cholesterol to pregnenolone and the peripheral aromatization of androgenic precursors into estrogens. Structurally similar to androstenedione, exemestane might have a big impact on androgenic effect.

Biological Activity I Assay Protocols (From Reference)
ln Vitro
Exemestane dramatically boosts the number of cells in hFOB, Saos-2 cells (1-1000 nM; 72 h) [2]. Exemestane (72 h) stimulates the expression of MYBL2, OSTM1, HOXD11, ADCYAP1R1, and glypican 2 in hFOB cells and boosts alkaline phosphatase activity in Saos-2 and hFOB cells [2]. With a Ki of 4.3 nM, exemestane competitively inhibits and inactivates human placental aromatase in a time-dependent manner. With an IC50 of 0.9 μM, exemestane substitutes [3H]5α-dihydrotestosterone in the rat prostate androgen receptor [1].
ln Vivo
Treatment with exemestane (20–100 mg/kg; intramuscular injection; once weekly; for 16 weeks) resulted in significant increases in trabecular bone volume, fifth lumbar vertebra compressive strength, femoral flexural strength, and lumbar and femoral BMD. Exemestane considerably lowers the elevations in serum osteocalcin and pyridinoline that are brought on by ovariectomy. Serum cholesterol and LDL cholesterol are markedly lowered with exemestane [3]. Rats with mammary tumors produced by 7,12-dimethylbenzanthracene (DMBA) show 26% complete (CR) and 18% partial (PR) tumor regression when exposed to exemestane (20 mg/kg/day) subcutaneously [4].
Cell Assay
Cell Viability Assay[2]
Cell Types: hFOB, Saos-2 cells
Tested Concentrations: 1 nM, 10 nM, 100 nM, 1000 nM
Incubation Duration: 72 hrs (hours)
Experimental Results: Induced cell proliferation.
Animal Protocol
Animal/Disease Models: Female Sprague Dawley rats (10-month-old) bearing ovariectomy [3]
Doses: 20 mg/kg, 50 mg/kg, or 100 mg/kg
Route of Administration: intramuscular (im) injection; once weekly; for 16 weeks
Experimental Results: Dramatically increased the lumbar vertebral and femoral BMD, bending strength of the femur, compressive strength of the fifth lumbar vertebra, and trabecular bone volume.
References
[1]. Di Salle, E., et al., Novel aromatase and 5 alpha-reductase inhibitors. J Steroid Biochem Mol Biol, 1994. 49(4-6): p. 289-94.
[2]. Miki, Y, et al. Effects of aromatase inhibitors on human osteoblast and osteoblast-like cells: a possible androgenic bone protective effects induced by exemestane. Bone. 2004 Sep 1;10(17):5717-23.
[3]. Goss, P.E., et al., Effects of the steroidal aromatase inhibitor exemestane and the nonsteroidal aromatase inhibitor letrozole on bone and lipid metabolism in ovariectomized rats. Clin Cancer Res, 2004. 10(17): p. 5717-23.
[4]. Zaccheo, T., D. Giudici, and E. Di Salle, Inhibitory effect of combined treatment with the aromatase inhibitor exemestane and tamoxifen on DMBA-induced mammary tumors in rats. J Steroid Biochem Mol Biol, 1993. 44(4-6): p. 677-80.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C20H24O2
Molecular Weight
296.4
CAS #
107868-30-4
SMILES
O=C(C=C1C(C[C@@]2([H])[C@]3([H])CC4)=C)C=C[C@]1(C)[C@@]2([H])CC[C@]3(C)C4=O
InChi Key
BFYIZQONLCFLEV-DAELLWKTSA-N
InChi Code
InChI=1S/C20H24O2/c1-12-10-14-15-4-5-18(22)20(15,3)9-7-16(14)19(2)8-6-13(21)11-17(12)19/h6,8,11,14-16H,1,4-5,7,9-10H2,2-3H3/t14-,15-,16-,19+,20-/m0/s1
Chemical Name
(8R,9S,10R,13S,14S)-10,13-dimethyl-6-methylene-7,8,9,10,11,12,13,14,15,16-decahydro-3H-cyclopenta[a]phenanthrene-3,17(6H)-dione.
Synonyms
FCE24304, PNU155971; PNU155971; PNU-155971; PNU 155971; FCE24304; FCE-24304; FCE 24304; Exemestane; US trade name: Aromasin.
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO: 54 mg/mL (182.2 mM)
Water:<1 mg/mL
Ethanol: 15 mg/mL (50.6 mM)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 3.3738 mL 16.8691 mL 33.7382 mL
5 mM 0.6748 mL 3.3738 mL 6.7476 mL
10 mM 0.3374 mL 1.6869 mL 3.3738 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us