yingweiwo

Fangchinoline

Alias: Fangchinoline; Isofangchinoline; 33889-68-8; Demethyl tetrandrine; Limacine; 436-77-1; THALRUGOSINE; Thalrugosine;Thaligine;
Cat No.:V30541 Purity: ≥98%
Fangchinoline is extracted from Stephania tetrandra and has a wide range of bioactivities, like immunity enhancement, anti~inflammatory, bactericidal ( bacteria killing) and anti-atherosclerosis.
Fangchinoline
Fangchinoline Chemical Structure CAS No.: 436-77-1
Product category: New2
This product is for research use only, not for human use. We do not sell to patients.
Size Price Stock Qty
5mg
Other Sizes

Other Forms of Fangchinoline:

  • Fangchinoline
Official Supplier of:
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Alternate Text
Top Publications Citing lnvivochem Products
Product Description
Fangchinoline is extracted from Stephania tetrandra and has a wide range of bioactivities, like immunity enhancement, anti~inflammatory, bactericidal ( bacteria killing) and anti-atherosclerosis. Fangchinoline is a new HIV-1 inhibitor that can suppress HIV-1 replication by impairing the gp160 proteolytic process. Fangchinoline targets focal adhesion kinase (FAK) and inhibits the FAK-mediated signaling pathway in tumor cells. Fangchinoline causes apoptosis and adaptive autophagy in bladder cancer.
Biological Activity I Assay Protocols (From Reference)
Targets
Natural product
ln Vitro
With IC50 values of 19.0 µM (24 hours), 12.0 µM (48 hours), and 7.57 µM (5637 72 hours), 11.9 µM (24 hours), 9.92 µM (48 hours), and 7.13 µM (72 hours) in cells, fumangchinoline (2.5–40 µM; 24-96 hours) inhibits T24 and 5637 cells in a dose-dependent manner [1]. When applied to T24 and 5637 cells, fanchinoline (5 µM; 24 hours) significantly increases caspase-3 cleavage, decreases p62, and increases the ratio of LC3-II/LC3-I [1].
The introduction of highly active antiretroviral therapy has led to a significant reduction in the morbidity and mortality of acquired immunodeficiency syndrome patients. However, the emergence of drug resistance has resulted in the failure of treatments in large numbers of patients and thus necessitates the development of new classes of anti-HIV drugs. In this study, more than 200 plant-derived small-molecule compounds were evaluated in a cell-based HIV-1 antiviral screen, resulting in the identification of a novel HIV-1 inhibitor (fangchinoline). Fangchinoline, a bisbenzylisoquinoline alkaloid isolated from Radix Stephaniae tetrandrae, exhibited antiviral activity against HIV-1 laboratory strains NL4-3, LAI and BaL in MT-4 and PM1 cells with a 50% effective concentration ranging from 0.8 to 1.7 µM. Mechanism-of-action studies showed that fangchinoline did not exhibit measurable antiviral activity in TZM-b1 cells but did inhibit the production of infectious virions in HIV-1 cDNA transfected 293T cells, which suggests that the compound targets a late event in infection cycle. Furthermore, the antiviral effect of fangchinoline seems to be HIV-1 envelope-dependent, as the production of infectious HIV-1 particles packaged with a heterologous envelope, the vesicular stomatitis virus G glycoprotein, was unaffected by fangchinoline. Western blot analysis of HIV envelope proteins expressed in transfected 293T cells and in isolated virions showed that fangchinoline inhibited HIV-1 gp160 processing, resulting in reduced envelope glycoprotein incorporation into nascent virions. Collectively, our results demonstrate that fangchinoline inhibits HIV-1 replication by interfering with gp160 proteolytic processing. Fangchinoline may serve as a starting point for developing a new HIV-1 therapeutic approach.[1]
Fangchinoline effectively suppressed proliferation and invasion of A549 cell line but not NCI-H292, NCI-H446, and NCI-H460 cell lines by inhibiting the phosphorylation of FAK (Tyr397) and its downstream pathways, due to the significant differences of Fak expression between A549 and the other three cell lines. And all FAK-paxillin/MMP2/MMP9 pathway, FAK-Akt pathway, and FAK-MEK-ERK1/2 pathway could be inhibited by fangchinoline. Discussion: Fangchinoline effectively suppressed proliferation and invasion of A549 cell line by inhibiting the phosphorylation of FAK (Tyr397) and its downstream pathways. Conclusion: Fangchinoline could inhibit the phosphorylation of FAK(p-Tyr397), at least partially. Fangchinoline as a kinase inhibitor targets FAK and suppresses FAK-mediated signaling pathway and inhibits the growth and the invasion in tumor cells which highly expressed FAK such as A549 cell line. Keywords: FAK; fangchinoline; lung cancer cell; phosphorylation; signaling pathway.[2]
Our data indicated that Fangchinoline/Fcn caused an impairment in energy generation, which led to apoptosis and adaptive autophagy in bladder cancer. These results demonstrated that Fcn may be a potential candidate for use in the prevention and treatment of bladder cancer.[3]
Cell Assay
Cell Viability Assay[3]
Cell Types: T24 and 5637 Cell
Tested Concentrations: 2.5 µM; 5 µM; 10 µM; 20 µM; 30 µM; 40 µM
Incubation Duration: 24 hrs (hours); 48 hrs (hours); 96 hrs (hours)
Experimental Results: Inhibition of T24 and 5637 cell proliferation .

Western Blot Analysis[3]
Cell Types: T24 and 5637 Cell
Tested Concentrations: 5 µM
Incubation Duration: 24 hrs (hours)
Experimental Results: Increased LC3-II/LC3-I ratio and caspase-3 cleavage.
References

[1]. Fangchinoline inhibits human immunodeficiency virus type 1 replication by interfering with gp160 proteolytic processing. PLoS One. 2012;7(6):e39225.

[2]. Fangchinoline as a kinase inhibitor targets FAK and suppresses FAK-mediated signaling pathway in A549. J Drug Target. 2015 Apr;23(3):266-74.

[3]. Fangchinoline Induces Apoptosis, Autophagy and Energetic Impairment in Bladder Cancer. Cell Physiol Biochem. 2017;43(3):1003-1011.

Additional Infomation
Fangchinoline is a bisbenzylisoquinoline alkaloid that is (1beta)- berbaman which has been substituted by methyl groups at the 2 and 2' positions, by methoxy groups at the 6, 6', and 12 positions, and by a hydroxy group at position 7. Isolated from Stephania tetrandra, it has been found to possess neuroprotective and anti-tumour activity. It has a role as an antineoplastic agent, an anti-inflammatory agent, an antioxidant, an anti-HIV-1 agent, a neuroprotective agent and a plant metabolite. It is a macrocycle, a bisbenzylisoquinoline alkaloid and an aromatic ether.
Fangchinoline has been reported in Stephania tetrandra, Stephania hernandifolia, and other organisms with data available.
These protocols are for reference only. InvivoChem does not independently validate these methods.
Physicochemical Properties
Molecular Formula
C37H40N2O6
Molecular Weight
608.7233
Exact Mass
608.288
Elemental Analysis
C, 73.01; H, 6.62; N, 4.60; O, 15.77
CAS #
436-77-1
Related CAS #
(R)-Fangchinoline;33889-68-8
PubChem CID
73481
Appearance
White to off-white solid powder
Melting Point
-245 °F to -148 °F
473 °F (decomposes)
LogP
6.1
Hydrogen Bond Donor Count
1
Hydrogen Bond Acceptor Count
8
Rotatable Bond Count
3
Heavy Atom Count
45
Complexity
963
Defined Atom Stereocenter Count
2
SMILES
O1C2=C(C([H])=C3C([H])([H])C([H])([H])N(C([H])([H])[H])[C@@]([H])(C([H])([H])C4C([H])=C([H])C(=C([H])C=4[H])OC4=C(C([H])=C([H])C(=C4[H])C([H])([H])[C@@]4([H])C5=C1C(=C(C([H])=C5C([H])([H])C([H])([H])N4C([H])([H])[H])OC([H])([H])[H])O[H])OC([H])([H])[H])C3=C2[H])OC([H])([H])[H]
InChi Key
IIQSJHUEZBTSAT-VMPREFPWSA-N
InChi Code
InChI=1S/C37H40N2O6/c1-38-14-12-24-19-31(42-4)33-21-27(24)28(38)16-22-6-9-26(10-7-22)44-32-18-23(8-11-30(32)41-3)17-29-35-25(13-15-39(29)2)20-34(43-5)36(40)37(35)45-33/h6-11,18-21,28-29,40H,12-17H2,1-5H3/t28-,29-/m0/s1
Chemical Name
(1S,14S)-9,20,25-trimethoxy-15,30-dimethyl-7,23-dioxa-15,30-diazaheptacyclo[22.6.2.23,6.18,12.114,18.027,31.022,33]hexatriaconta-3(36),4,6(35),8,10,12(34),18,20,22(33),24,26,31-dodecaen-21-ol
Synonyms
Fangchinoline; Isofangchinoline; 33889-68-8; Demethyl tetrandrine; Limacine; 436-77-1; THALRUGOSINE; Thalrugosine;Thaligine;
HS Tariff Code
2934.99.9001
Storage

Powder      -20°C    3 years

                     4°C     2 years

In solvent   -80°C    6 months

                  -20°C    1 month

Note: This product requires protection from light (avoid light exposure) during transportation and storage.
Shipping Condition
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
Solubility Data
Solubility (In Vitro)
DMSO : ~50 mg/mL (~82.14 mM)
Solubility (In Vivo)
Solubility in Formulation 1: ≥ 2.08 mg/mL (3.42 mM) (saturation unknown) in 10% DMSO + 40% PEG300 + 5% Tween80 + 45% Saline (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 400 μL PEG300 and mix evenly; then add 50 μL Tween-80 to the above solution and mix evenly; then add 450 μL normal saline to adjust the volume to 1 mL.
Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH₂ O to obtain a clear solution.

Solubility in Formulation 2: ≥ 2.08 mg/mL (3.42 mM) (saturation unknown) in 10% DMSO + 90% Corn Oil (add these co-solvents sequentially from left to right, and one by one), clear solution.
For example, if 1 mL of working solution is to be prepared, you can add 100 μL of 20.8 mg/mL clear DMSO stock solution to 900 μL of corn oil and mix evenly.

 (Please use freshly prepared in vivo formulations for optimal results.)
Preparing Stock Solutions 1 mg 5 mg 10 mg
1 mM 1.6428 mL 8.2140 mL 16.4279 mL
5 mM 0.3286 mL 1.6428 mL 3.2856 mL
10 mM 0.1643 mL 0.8214 mL 1.6428 mL

*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.

Calculator

Molarity Calculator allows you to calculate the mass, volume, and/or concentration required for a solution, as detailed below:

  • Calculate the Mass of a compound required to prepare a solution of known volume and concentration
  • Calculate the Volume of solution required to dissolve a compound of known mass to a desired concentration
  • Calculate the Concentration of a solution resulting from a known mass of compound in a specific volume
An example of molarity calculation using the molarity calculator is shown below:
What is the mass of compound required to make a 10 mM stock solution in 5 ml of DMSO given that the molecular weight of the compound is 350.26 g/mol?
  • Enter 350.26 in the Molecular Weight (MW) box
  • Enter 10 in the Concentration box and choose the correct unit (mM)
  • Enter 5 in the Volume box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 17.513 mg appears in the Mass box. In a similar way, you may calculate the volume and concentration.

Dilution Calculator allows you to calculate how to dilute a stock solution of known concentrations. For example, you may Enter C1, C2 & V2 to calculate V1, as detailed below:

What volume of a given 10 mM stock solution is required to make 25 ml of a 25 μM solution?
Using the equation C1V1 = C2V2, where C1=10 mM, C2=25 μM, V2=25 ml and V1 is the unknown:
  • Enter 10 into the Concentration (Start) box and choose the correct unit (mM)
  • Enter 25 into the Concentration (End) box and select the correct unit (mM)
  • Enter 25 into the Volume (End) box and choose the correct unit (mL)
  • Click the “Calculate” button
  • The answer of 62.5 μL (0.1 ml) appears in the Volume (Start) box
g/mol

Molecular Weight Calculator allows you to calculate the molar mass and elemental composition of a compound, as detailed below:

Note: Chemical formula is case sensitive: C12H18N3O4  c12h18n3o4
Instructions to calculate molar mass (molecular weight) of a chemical compound:
  • To calculate molar mass of a chemical compound, please enter the chemical/molecular formula and click the “Calculate’ button.
Definitions of molecular mass, molecular weight, molar mass and molar weight:
  • Molecular mass (or molecular weight) is the mass of one molecule of a substance and is expressed in the unified atomic mass units (u). (1 u is equal to 1/12 the mass of one atom of carbon-12)
  • Molar mass (molar weight) is the mass of one mole of a substance and is expressed in g/mol.
/

Reconstitution Calculator allows you to calculate the volume of solvent required to reconstitute your vial.

  • Enter the mass of the reagent and the desired reconstitution concentration as well as the correct units
  • Click the “Calculate” button
  • The answer appears in the Volume (to add to vial) box
In vivo Formulation Calculator (Clear solution)
Step 1: Enter information below (Recommended: An additional animal to make allowance for loss during the experiment)
Step 2: Enter in vivo formulation (This is only a calculator, not the exact formulation for a specific product. Please contact us first if there is no in vivo formulation in the solubility section.)
+
+
+

Calculation results

Working concentration mg/mL;

Method for preparing DMSO stock solution mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.

Method for preparing in vivo formulation:Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.

(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
             (2) Be sure to add the solvent(s) in order.

Contact Us