Size | Price | |
---|---|---|
500mg | ||
1g | ||
Other Sizes |
Fasudil diHCl, the dihydrochloride salt of Fasudil (HA-1077; AT-877), is a potent inhibitor of ROCK-II, PKA, PKG, PKC, and MLCK (Ki = 0.33 μM, 1.6 μM, 1.6 μM, 3.3 μM and 36 μM in cell-free assays, respectively) with vasodilatory effects. It is used as a vasodilator for the treatment of cerebral vasospasm, which is often due to subarachnoid hemorrhage, as well as to improve the cognitive decline seen in stroke victims. Fasudil is found to be effective for the treatment of pulmonary hypertension.
Targets |
p160ROCK (Ki = 0.33 μM); ROCK2 (IC50 = 0.158 μM); PKG (IC50 = 1.65 μM); PKA (IC50 = 4.58 μM); PKC (IC50 = 12.30 μM);
|
---|---|
ln Vitro |
Fasudil dihydrochloride (100 μM) suppresses cell proliferation in rat HSCs (hepatic stellate cells) and human HSC-derived TWNT-4 cells by preventing cell spreading, stress fiber production, and α-SMA expression[4]. In rat HSCs and human HSC-derived TWNT-4 cells, dihydrochloride (50-100 μM; 24 hours) suppresses the phosphorylation of ERK1/2, JNK, and p38 caused by LPA (lysophoaphatidic acid)[4]. In human HSC-derived TWNT-4 cells, facudil dihydrochloride (25–100 μM; 24 hours) promotes MMP-1 transcription while suppressing collagen and TIMP transcription[4].
|
ln Vivo |
When administered intravenously one hour prior to surgery, facudil dihydrochloride (10 mg/kg) has been shown to protect against cardiovascular disease, inhibit JNK activation, and lessen the amount of AIF that is translocated from the mitochondria to the nucleus during ischemia[5]. Fasudil dihydrochloride (50 mg/kg/d; ip) inhibits the proliferation of lymphocytes, results in downregulation of interleukin (IL)-17, and a significant decrease in the IFN-γ/IL-4 ratio. It also prevents acute and relapsing EAE (experimental autoimmune encephalomyelitis) caused by the proteolipid protein PLP p139-151 [6]. Fasudil dihydrochloride (100 mg/kg/d; po) decreases inflammation, demyelination, axonal loss, and APP positive in the mouse spinal cord and significantly lowers the incidence and pathological examination score of experimental autoimmune encephalomyelitis (EAE) in SJL/J mice [6].
|
Enzyme Assay |
Cyclic AMP-dependent protein kinase activity is assayed in a reaction mixture containing, in a final volume of 0.2 mL, 50 mM Tris-HCl (pH 7.0), 10 mM magnesium acetate, 2 mM EGTA, 1 μM cyclic AMP or absence of cyclic AMP, 3.3 to 20 μM [r-32P] ATP (4×105 c.p.m.), 0.5 μg of the enzyme, 100 μg of histone H2B and compound. The mixture is incubated at 30°C for 5 min. The reaction is terminated by adding 1mL of ice-cold 20% trichloroacetic acid after adding 500 μg of bovine serum albumin as a carrier protein. The sample is centrifuged at 3000 r.p.m. for 15min, the pellet is resuspended in ice-cold 10% trichloro-acetic acid solution and the centrifugation-resuspension cycle is repeated three times. The final pellet is dissolved in 1 mL of 1 N NaOH and radioactivity is measured with a liquid scintillation counter.
|
Cell Assay |
Western Blot Analysis[4]
Cell Types: Rat HSCs and human HSC -derived TWNT-4 cells Tested Concentrations: 50 μM; 100 μM Incubation Duration: 24 hrs (hours) Experimental Results: Suppressed the LPA-induced phosphorylation of ERK1/2, JNK and p38 MAPK by 60%, 70%,and 90%, respectively. RT- PCR[4] Cell Types: Rat HSCs and human HSC-derived TWNT-4 cells Tested Concentrations: 25 μM; 50 μM; 100 μM Incubation Duration: 24 hrs (hours) Experimental Results: decreased the expression of type I collagen, a-SMA, and TIMP- 1. |
Animal Protocol |
Animal/Disease Models: Myocardial ischemia and reperfusion in rat (250-300 g)[5]
Doses: 10 mg/kg Route of Administration: intravenous (iv) injection; 1 h before operation Experimental Results: Activated the Rho-kinase, JNK, and resulted AIF translocated to the nucleus. Inhibited Rho-kinase activity, and decreased myocardial infarct size and heart cell apoptosis. |
Toxicity/Toxicokinetics |
rat LD50 oral 335 mg/kg SENSE ORGANS AND SPECIAL SENSES: PTOSIS: EYE; BEHAVIORAL: TREMOR; BEHAVIORAL: CONVULSIONS OR EFFECT ON SEIZURE THRESHOLD Yakuri to Chiryo. Pharmacology and Therapeutics., 20(Suppl
rat LD50 subcutaneous 123 mg/kg SENSE ORGANS AND SPECIAL SENSES: PTOSIS: EYE; BEHAVIORAL: TREMOR; BEHAVIORAL: CONVULSIONS OR EFFECT ON SEIZURE THRESHOLD Yakuri to Chiryo. Pharmacology and Therapeutics., 20(Suppl rat LD50 intravenous 59900 ug/kg SENSE ORGANS AND SPECIAL SENSES: PTOSIS: EYE; BEHAVIORAL: CONVULSIONS OR EFFECT ON SEIZURE THRESHOLD; GASTROINTESTINAL: CHANGES IN STRUCTURE OR FUNCTION OF SALIVARY GLANDS Yakuri to Chiryo. Pharmacology and Therapeutics., 20(Suppl mouse LD50 oral 274 mg/kg SENSE ORGANS AND SPECIAL SENSES: PTOSIS: EYE; BEHAVIORAL: ALTERED SLEEP TIME (INCLUDING CHANGE IN RIGHTING REFLEX); BEHAVIORAL: CONVULSIONS OR EFFECT ON SEIZURE THRESHOLD Yakuri to Chiryo. Pharmacology and Therapeutics., 20(Suppl mouse LD50 subcutaneous 124 mg/kg SENSE ORGANS AND SPECIAL SENSES: PTOSIS: EYE; BEHAVIORAL: ALTERED SLEEP TIME (INCLUDING CHANGE IN RIGHTING REFLEX); BEHAVIORAL: CONVULSIONS OR EFFECT ON SEIZURE THRESHOLD Yakuri to Chiryo. Pharmacology and Therapeutics., 20(Suppl |
References |
|
Additional Infomation |
Fasudil is an isoquinoline substituted by a (1,4-diazepan-1-yl)sulfonyl group at position 5. It is a Rho-kinase inhibitor and its hydrochloride hydrate form is approved for the treatment of cerebral vasospasm and cerebral ischemia. It has a role as a geroprotector, an EC 2.7.11.1 (non-specific serine/threonine protein kinase) inhibitor, a vasodilator agent, a nootropic agent, a neuroprotective agent, an antihypertensive agent and a calcium channel blocker. It is a N-sulfonyldiazepane and a member of isoquinolines. It is a conjugate base of a fasudil(1+).
Fasudil has been investigated in Carotid Stenosis. Introduction: Rho kinase (ROCK) plays a critical role in actin cytoskeleton organization and is involved in diverse fundamental cellular functions such as contraction and gene expression. Fasudil, a ROCK inhibitor, has been clinically applied since 1995 for the treatment of subarachnoid hemorrhage (SAH) in Japan. Increasing evidences indicate that fasudil could exhibit markedly therapeutic effect on central nervous system (CNS) disorders, such as Alzheimer's disease. Areas covered: This article summarizes results from supporting evidence for the potential therapy for fasudil against a variety of CNS diseases. And the properties of its analogs are also summarized. Expert opinion: Current therapies against CNS disorders are only able to attenuate the symptoms and fail in delaying or preventing disease progression and new approaches with disease-modifying activity are desperately needed. The dramatic effects of fasudil in animal models and/or clinical applications of CNS disorders make it a promising strategy to overcome CNS disorders in human beings. Given the complex pathology of CNS disorders, further efforts are necessary to develop multifunctional fasudil derivatives or combination strategies with other drugs in order to exert more powerful effects with minimized adverse effects in the combat of CNS disorders. https://pubmed.ncbi.nlm.nih.gov/23461757/ Dysfunction of the blood-brain barrier (BBB) and blood-spinal cord barrier (BSCB) is a primary characteristic of multiple sclerosis (MS). We evaluated the protective effects of fasudil, a selective ROCK inhibitor, in a model of experimental autoimmune encephalomyelitis (EAE) that was induced by guinea-pig spinal cord. In addition, we studied the effects of fasudil on BBB and BSCB permeability. We found that fasudil partly alleviated EAE-dependent damage by decreasing BBB and BSCB permeability. These results provide rationale for the development of selective inhibitors of Rho kinase as a novel therapy for MS. https://pubmed.ncbi.nlm.nih.gov/21978848/ Background/aims: The Rho-ROCK signaling pathways play an important role in the activation of hepatic stellate cells (HSCs). We investigated the effects of fasudil hydrochloride hydrate (fasudil), a Rho-kinase (ROCK) inhibitor, on cell growth, collagen production, and collagenase activity in HSCs. Methods: Rat HSCs and human HSC-derived TWNT-4 cells were cultured for studies on stress fiber formation and alpha-smooth muscle actin (alpha-SMA) expression. Proliferation was measured by BrdU incorporation, and apoptosis by TUNEL assay. The phosphorylation states of the MAP kinases (MAPKs), extra cellular signal -regulated kinase 1/2 (ERK1/2), c-jun kinase (JNK), and p38 were evaluated by western blot analysis. Type I collagen, matrix metalloproteinase-1 (MMP-1) and tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) production and gene expression were evaluated by ELISA and real-time PCR, respectively. Collagenase activity (active MMP-1) was also evaluated. Results: Fasudil (100 microM) inhibited cell spreading, the formation of stress fibers, and expression of alpha-SMA with concomitant suppression of cell growth, although it did not induce apoptosis. Fasudil inhibited phosphorylation of ERK1/2, JNK, and p38. Treatment with fasudil suppressed the production and transcription of collagen and TIMP, stimulated the production and transcription of MMP-1, and enhanced collagenase activity. Conclusion: These findings demonstrated that fasudil not only suppresses proliferation and collagen production but also increases collagenase activity. https://pubmed.ncbi.nlm.nih.gov/15998434/ |
Molecular Formula |
C14H17N3O2S.2[HCL]
|
---|---|
Molecular Weight |
364.29056
|
Exact Mass |
381.068
|
CAS # |
203911-27-7
|
Related CAS # |
Fasudil Hydrochloride;105628-07-7;Fasudil;103745-39-7;Fasudil hydrochloride semihydrate;186694-02-0
|
PubChem CID |
16219471
|
Appearance |
Typically exists as solid at room temperature
|
LogP |
4.106
|
Hydrogen Bond Donor Count |
3
|
Hydrogen Bond Acceptor Count |
5
|
Rotatable Bond Count |
2
|
Heavy Atom Count |
22
|
Complexity |
421
|
Defined Atom Stereocenter Count |
0
|
SMILES |
C1=CC2=CN=CC=C2C(=C1)S(=O)(=O)N3CCCNCC3.Cl.Cl
|
InChi Key |
NOXXIYDYFSNHDF-UHFFFAOYSA-N
|
InChi Code |
InChI=1S/C14H17N3O2S.2ClH/c18-20(19,17-9-2-6-15-8-10-17)14-4-1-3-12-11-16-7-5-13(12)14;;/h1,3-5,7,11,15H,2,6,8-10H2;2*1H
|
Chemical Name |
5-(1,4-diazepan-1-ylsulfonyl)isoquinoline;dihydrochloride
|
Synonyms |
Fasudil dihydrochloride; HA-1077 DIHYDROCHLORIDE; 5-((1,4-Diazepan-1-yl)sulfonyl)isoquinoline dihydrochloride; Fasudil (dihydrochloride); Isoquinoline, 5-[(hexahydro-1H-1,4-diazepin-1-yl)sulfonyl]-, hydrochloride (1:2); ha-1077; HA-1077 (hydrochloride);
|
HS Tariff Code |
2934.99.9001
|
Storage |
Powder -20°C 3 years 4°C 2 years In solvent -80°C 6 months -20°C 1 month |
Shipping Condition |
Room temperature (This product is stable at ambient temperature for a few days during ordinary shipping and time spent in Customs)
|
Solubility (In Vitro) |
May dissolve in DMSO (in most cases), if not, try other solvents such as H2O, Ethanol, or DMF with a minute amount of products to avoid loss of samples
|
---|---|
Solubility (In Vivo) |
Note: Listed below are some common formulations that may be used to formulate products with low water solubility (e.g. < 1 mg/mL), you may test these formulations using a minute amount of products to avoid loss of samples.
Injection Formulations
Injection Formulation 1: DMSO : Tween 80: Saline = 10 : 5 : 85 (i.e. 100 μL DMSO stock solution → 50 μL Tween 80 → 850 μL Saline)(e.g. IP/IV/IM/SC) *Preparation of saline: Dissolve 0.9 g of sodium chloride in 100 mL ddH ₂ O to obtain a clear solution. Injection Formulation 2: DMSO : PEG300 :Tween 80 : Saline = 10 : 40 : 5 : 45 (i.e. 100 μL DMSO → 400 μLPEG300 → 50 μL Tween 80 → 450 μL Saline) Injection Formulation 3: DMSO : Corn oil = 10 : 90 (i.e. 100 μL DMSO → 900 μL Corn oil) Example: Take the Injection Formulation 3 (DMSO : Corn oil = 10 : 90) as an example, if 1 mL of 2.5 mg/mL working solution is to be prepared, you can take 100 μL 25 mg/mL DMSO stock solution and add to 900 μL corn oil, mix well to obtain a clear or suspension solution (2.5 mg/mL, ready for use in animals). View More
Injection Formulation 4: DMSO : 20% SBE-β-CD in saline = 10 : 90 [i.e. 100 μL DMSO → 900 μL (20% SBE-β-CD in saline)] Oral Formulations
Oral Formulation 1: Suspend in 0.5% CMC Na (carboxymethylcellulose sodium) Oral Formulation 2: Suspend in 0.5% Carboxymethyl cellulose Example: Take the Oral Formulation 1 (Suspend in 0.5% CMC Na) as an example, if 100 mL of 2.5 mg/mL working solution is to be prepared, you can first prepare 0.5% CMC Na solution by measuring 0.5 g CMC Na and dissolve it in 100 mL ddH2O to obtain a clear solution; then add 250 mg of the product to 100 mL 0.5% CMC Na solution, to make the suspension solution (2.5 mg/mL, ready for use in animals). View More
Oral Formulation 3: Dissolved in PEG400  (Please use freshly prepared in vivo formulations for optimal results.) |
Preparing Stock Solutions | 1 mg | 5 mg | 10 mg | |
1 mM | 2.7451 mL | 13.7253 mL | 27.4507 mL | |
5 mM | 0.5490 mL | 2.7451 mL | 5.4901 mL | |
10 mM | 0.2745 mL | 1.3725 mL | 2.7451 mL |
*Note: Please select an appropriate solvent for the preparation of stock solution based on your experiment needs. For most products, DMSO can be used for preparing stock solutions (e.g. 5 mM, 10 mM, or 20 mM concentration); some products with high aqueous solubility may be dissolved in water directly. Solubility information is available at the above Solubility Data section. Once the stock solution is prepared, aliquot it to routine usage volumes and store at -20°C or -80°C. Avoid repeated freeze and thaw cycles.
Calculation results
Working concentration: mg/mL;
Method for preparing DMSO stock solution: mg drug pre-dissolved in μL DMSO (stock solution concentration mg/mL). Please contact us first if the concentration exceeds the DMSO solubility of the batch of drug.
Method for preparing in vivo formulation::Take μL DMSO stock solution, next add μL PEG300, mix and clarify, next addμL Tween 80, mix and clarify, next add μL ddH2O,mix and clarify.
(1) Please be sure that the solution is clear before the addition of next solvent. Dissolution methods like vortex, ultrasound or warming and heat may be used to aid dissolving.
(2) Be sure to add the solvent(s) in order.